PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Exact solutions for the longitudinal flow of a generalized Maxwell fluid in a circular cylinder

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper deals with the longitudinal flow of a generalized Maxwell fluid in an infinite circular cylinder, due to the longitudinal variable time-dependent shear stress that is prescribed on the boundary of the cylinder. The fractional calculus approach in the constitutive relationship model of a Maxwell fluid is introduced. The velocity field and the resulting shear stress are obtained by means of the Laplace and finite Hankel transforms and satisfy all the imposed initial and boundary conditions. The solutions corresponding to ordinary Maxwell fluids as well as those for Newtonian fluids are obtained as limiting cases of our general solutions. Finally, the influence of the fractional coefficient on the velocity and shear stress of the fluid is analyzed by graphical illustrations.
Rocznik
Strony
305--317
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
autor
  • Department of Mathematical Sciences CO MS ATS Institute of Information Technology Lahore. Pakistan, irnransmsrazi@gmail.com
Bibliografia
  • 1. K.R. RAJAGOPAL, Mechanics of non-Newtonian fluids, recent developments in theoretical fluids mechanics, Firman Research Notes in Mathematics, Vol. 291, Longman, New York, 129-162, 1993.
  • 2. J.E. DUNN, K.R. RAJAGOPAL, Fluids of differential type: Critical review and thermodynamic analysis, Int, J. Eng. Sci., 33, 5, 689-729, 1995.
  • 3. J.C. MAXWELL, On the dynamical theory of gases, Philos. Trans. Roy. Soc. Lond., A 157, 26-78, 1866.
  • 4. S.G. SAMKO, A. A- KILBAS, O.I. MARICHEV, Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Amsterdam, 1993.
  • 5. I. PODLUBNY, Fractional Differential Equations, Academic Press, San Diego. 1999.
  • 6. N. MARKIS, D.F. DARGUSH, M.C. CONSTANTINOU, Dynamical analysis of generalized viscoelastic fluids, J. Eng. Mech., 119, 8, 1663-1679, 1993.
  • 7. D. TONG, L. YOSONG, Exact solutions for the unsteady rotational flow of non-Newtonian fluid in an annular pipe, Int. J. Eng. Sci., 43, 281-289, 2005.
  • 8. D. TONG, W. RUIHE, Y. HESHAN, Exact solutions for the flow of non-Newtonian fluid with fractional derivative in an annular pipe. Science in China, Ser. G Physics, Mechanics and Astronomy, 48, 485-495, 2005.
  • 9. W. AKHTAR, M. NAZAR, Exact solutions for the rotational flow of generalized Maxwell fluids in a circular cylinder, Bull. Math. Soc. Sci. Math. Roumania, 51, 99, No. 2, 93-101, 2008.
  • 10. C. FETECAU, A.U. AWAN, CORINA FETECAU, To.ylor-Couette flow of an Oldroyd-B fluid in a circular cylinder subject to a time-dependent rotation, Bull. Math. Soc. Sci. Math. Roumania, 52, 100, No. 2, 117-128, 2009.
  • 11. CORINA FETECAU, C. FETECAU, M. IMRAN, Axial Couette flow of an Oldroyd-B fluid due to a time-dependent shear stress, Math. Reports, 11, 61, No. 2, 145-154, 2009.
  • 12. CORINA FETECAU, D. VIERU, M. ATHAR, C. FETECAU, Unsteady flow of a generalized Maxwell fluid with fractional derivative due to a constaiitly accelerating plate, Compt. Math. Appl., 57, 596-603, 2009.
  • 13. D. VIERU, CORINA FETECAU, C. FETECAU, Flow of a generalized Oldroyd-B fluid due to a constantly accelerating plate, Appl. Math. Cornp., 201, 834-842, 2008.
  • 14. C. FRIEDRICH, Relaxation and retardation functions of the Maxwell model with fractional derivatives, Reol. Acta, 30, 151-158, 1991.
  • 15. H. SCHIESSEL, C. FRIEDRICH, A. BLUMEN, Applications to problems in polymer physics and rheology, [in:] R. HILFER [Ed.], Applications of fractional calculus in physics, Singapore, World Scientific, 2000.
  • 16. C.F. LORENZO, T.T. HARTLEY, Generalized functions for the fractional calculus, NASA/TP-1999-209424/Revl, 1999.
  • 17. H.T. Ql, H. JIN, Unsteady rotating flow of a viscoelastic fluid with fractional Maxwell model between coaxial cylinders, Acta. Mech. Sin., 22, 301-305. 2006.
  • 18. H.T. Qi, M.Y. Xu, Unsteady flow of viscoelastic fluid with fractional Maxwell model in a channel, Mech. Res. Commun., 34, 210-212, 2007.
  • 19. R. BANDELLI, K.R. RAJAGOPAL, Start-up flows of second grade fluids in domains with one finite dimension, Int. J. Non-linear Mech., 30. 817-839, 1995.
  • 20. L. DEBNATH, D. BHATTA, Integral Transforms and Their Applications (second ed.).Chapman and Hall/CRC Press, Boca Raton London, New York, 2007.
  • 21. W.N. McLACHLAN, Bessel Functions for Engineers, Oxford University Press, London, 1995.
  • 22. M. ABRAMOWITZ, LA. STEGUN, Handbook of Mathematical Functions, NBS, Appl. Math. Series 55, Washington, D.C, 1964.
  • 23. V. DITKIN, A. PROUDNICOV Transformation Integrals et Calcul Operational, Mir, Moscou, 1987.
  • 24. I. SIDDIQUE, Exact solution of some helical flows of Newtonian fluids, Proceedings of World Academy of Science, Eng. and Tech., 33, 664-667, 2008.
  • 25. W. AKHTAR, M. NAZAR, On the helical flow of Newtonian fluid induced by time-dependent shear, Proceeding of the Tenth Int. Conf. Zaragoza-Pau on Appl. Math, and Statistics, Jaca, September 15-17, 2008, Spain.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT1-0038-0019
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.