PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bounds on the effective isotropic moduli of thin elastic composite plates

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main aim of this paper is to estimate the effective moduli of an isotropic elastic composite, analyzed within the framework of the Kirchhoff-Love theory of thin plates in bending. Results of calculations provide explicit functional correlations between the homogenized properties of a composite plate made of two isotropic materials, thus yielding more restrictive bounds on pairs of effective moduli than the classical (uncoupled) Hashin-Shtrikman-Walpole ones. Applying the static-geometric analogy of Lurie and Goldenveizer, enables rewriting of these new bounds in the two-dimensional elasticity (plane stress) setting, thus revealing a link to the formulae previously found by Gibiansky and Cherkaev. Consequently, simple cross-property estimates are proposed for the plate subject to the simultaneous bending and in-plane loads.
Rocznik
Strony
253--281
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
Bibliografia
  • 1. A.V. CHERKAEV, Variational Methods for Structural Optimization, Springer, New York, 2000.
  • 2. A.V. CHERKAEV, L.V. GJBIANSKY, Coupled estimates for the bulk and shear moduli of a two-dimensional isotropic elastic composite, J. Mech. Phys. Solids, 41, (5), 937-980, 1993.
  • 3. P.G. CIARLET, Mathematical Elasticity. Vol. II: Theory of Plates, North-Holland. Else- vier, Amsterdam, 1997.
  • 4. L.V. GlBIANSKY, Effective properties of a plane two-phase elastic composites: coupled bulk-shear moduli bounds, [in:] Homogenization, V. BERDICHEVSKY, V. JIKOV, G. PA-PANICOLAU (Eds.], Series on Advances in Mathematics for Applied Sciences, Vol. 50, World Scientific, Singapore, 1999.
  • 5. A.L. GOLDENVEIZER, The Theory of Thin Elastic Shells, 2nd. ed., Nauka, Moscow, 1976 [in Russian.]
  • 6. Z. HASHIN, S. SHTRIKMAN, A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys. Solids, 11, 127-140, 1963.
  • 7. T. LEWIŃSKI, J.J. TELEGA, Plates, Laminates and Shells. Asymptotic Analysis and Homogenization, Series on Advances in Mathematics for Applied Sciences, Vol. 52, World Scientific, Singapore, 2000.
  • 8. S. Li, The micromecfianics theory of classical plates: a congruous estimate of overall elastic stiffness, Int. J. Solids Struct., 37, 5599-5628, 2000.
  • 9. K.A. LURIE, A.V. CHERKAEV, G-closure of some particular sets of admissible material characteristics for the problem of bending of thm elastic plates, J. Optimiz. Theory Appl., 42, 2, 305-316, 1984.
  • 10. G.W. MILTON, On characterizing the set of possible effective tensors of composites: The variational method and the translation method, Coinm. Pure Appl. Math.. 43, 6.V125. 1990.
  • 11. G.W. MILTON, The Theory of Composites, Cambridge University Press, Cambridge. 2002.
  • 12. P.M. NACHDI, Foundations of elastic shell theory, [in:] I.N. SNEDDON, R. HILL [Eds.] Progress in Solid Mechanics, vol. IV, North-Holland, Amsterdam, 1963.
  • 13. S. TIMOSHENKO, S. WoiNOWSKY-KRllIGER. Theory of Plates and Shells, 2nd ed., McGraw-Hill, New York, 1959.
  • 14. L.J. WALPOLE, On bounds for the overall elastic moduli of inhomogeneous systems, J. Mech. Phys. Solids, 14, 151-162, 1966.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT1-0038-0017
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.