PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Calculation of the force on solid body in the unsteady flow of incompressible fluid

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper, a special method to compute the aerodynamic force is presented. This method is especially addressed to the calculation while both the velocity and vorticity fields are found as a result of the vortex method application. In the case of vortex method, the vorticity field is shown as a sum of contributions given by a large number of the vorticity carriers. These carriers of vorticity move and change, but the vorticity distribution given by each of them is known. It means that both the vorticity and induced velocity field connected with them are easy to determine. The velocity field may also contain any potential component. This component assures the fulfillment of the asymptotic condition, and cancels the normal component of the velocity on the rigid body surface [15]. As it is known, the aerodynamic force may be calculated by using the basic definition, but in this case the boundary values of pressure and vorticity or derivatives of velocity field have to be found beforehand. These values are difficult to determine and their properties can be inconvenient. Quartapelle and Napolitano [12] introduced a special method of aerodynamic force calculation. This method does not require any surface integrals. Instead, the areas integrations are held. The integrands consist of vorticity and velocity fields only. The pressure field is excluded by special harmonic projection. The numerical experiment shows that the method of Quartapelle and Napolitano requires improvement in case of complicated, rapidly changing velocity and vorticity fields and the approximation of these fields in the neighborhood of the body not being perfect. However, if the concept of Quartapelle and Napolitano is applied to the area located outside the big sphere surrounding the body and containing the sources of vorticity, where velocity and vorticity fields have suitable properties (which permits to perform analytical calculations), we will get a simple formula for the aerodynamic force. This formula is not limited by additional properties of the pressure and velocity and vorticity fields. The numerical results are in relatively good agreement with the experimental data.
Słowa kluczowe
Rocznik
Strony
103--119
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
autor
autor
  • Faculty of Power and Aeronautical Engineering, Warsaw University of Technology; Pl. Politechniki 1, 00-0661 Warszawa, Poland, mpocwie@meil.pw.edu.pl
Bibliografia
  • 1. J.C. ADAMS, P.N. SWARZTRAUBER, ww.scd.ucar.edu/css/software/spherepack, 1998.
  • 2. T.A. JOHNSON, V.C. PATBL, Flow Past a Sphere up to a Reynolds Number of 300, J, Fluid Mech., 378, 19-70, 1999.
  • 3. D.J. FABRE, A. FRANC, J. MAGNAUDET, Bifurcations and symmetry breaking in the wake of axisymmetric bodies, Physic of Fluids, 20. 051702-4, 2008.
  • 4. O.A. LADHYZHENSKAYA, The Mathematical Theory of Viscous Incompressible Flow GiFM, Moskva, 1963; English transl.: Gordon and Breach, N.Y. 1963.
  • 5. R.H. MARGAVEY, R.L. BISHOP, Vortices in Sphere Wake, Can. J. Phys., 43, 1649, 1965.
  • 6. S. MIZOHATA, The theory of Partial Differential Equations, Cambridge 1973.
  • 7. F. NOCA, D. SHIELS, D. JEON, Measuring Instantaneous Fluid Dynamic Forces on Bodies, Using Only Velocity Fields and Their Derivatives, Journal of Fluids and Structures, 11, 345-350, 1997.
  • 8. F. NOCA, D. SHIELS, D. JEON, A Comparison of Methods for Evaluating Time-dependent Fluid Dynamic Forces on Bodies Using only Velocity Fields and Their Derivatives, Journal of Fluid and Structures, 13, 551, 1999.
  • 9. P. PLOUMHANS, G.S. WINCKELMANS, J.K. SALMON, A. LEONARD, M.S. WARREN,Vortex Methods for Direct Numerical Simulation of Three-Dimensional Bluff Body: Application to the Sphere at Re = 300, 500, and 1000, Journal of Computational Physics, 178, 427-463, 2002.
  • 10. M. POCWIERZ, The Pressure Field, Reaction and Typical Structures of POD for the Unsteady Flow Past the Solid Body [in Polish]. PhD Thesis, Warsaw University of Technology, 2005.
  • 11. L. QUARTAPELLE, M. NAPOLITANO, Integral Condition for Pressure in the Computation of Incompressible Viscous Flows, Journal of Computational Physics, 62, 340-348, 1986.
  • 12. L. QUARTAPELLE, M. NAPOLITANO, Force and Moment in Incompressible Flows, AIAA Journal, 21, 911-913, 1983.
  • 13. H. SCHLICHTING, K. GERSTEN, Boundary Layer Theory, Springer, 2000.
  • 14. L. SCHOUVEILER, M. PROVANSAL, S elf - sustained oscillations in the wake of a sphere,. Phisics of Fluids, 14, 11, 2002.
  • 15. A. STYCZEK, P. DUSZYŃSKI, M. POĆWIERZ, J. SZUMBARSKI, Random Vortex Method for Three Dimensional Flows. Part I: Mathematical Background, Journal of Theoretical and Applied Mechanics, 42, 1, 3-20, 2004.
  • 16. A. STYCZEK, P. DUSZYŃSKI, M. POĆWIERZ, J. SZUMBARSKI, Random Vortex Method for Three Dimensional Flows. Part II: Numerical Implementation and Sample Results, Journal of Theoretical and Applied Mechanics, 42, 2, 223-238, 2004.
  • 17. R. TEMAM, Navier-Stokes Equations. Theory and Numerical Analysis, North Holland,1984.
  • 18. A.G. TOMBOULIDES, S.A. ORSZAG, Numerical Investigation of Transitional and Weak Turbulent Flow Past a Sphere, J. Fluid Mech., 416, 45, 2000.
  • 19. J.S. Wu, G.M. FAETH, Sphere Wakes in Still Surroundings at hitermediate Reynolds Numbers, AIAA J., 31, 1448, 1993.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT1-0037-0016
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.