PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dislocation - Assisted Initiation of Energetic Materials

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The role of dislocations in assisting initiation of (explosive) chemical decomposition of energetic materials has connection with the known influences for crystals and polycrystals of dislocations facilitating permanent deformations and phase transformations. X-ray topographic observation of relatively few dislocations in solution-grown crystals relates to the influence of large Burgers (displacement) vectors that are characteristic of molecular crystal bonding. Both model evaluations of the load dependence of cracking at hardness indentations and the derived hardness stress-strain behaviors show that dislocation movement is difficult whether in the indentation strain fields or at the tips of indentation-induced cracks. Thus, energetic crystals are elastically compliant, plastically hard, and relatively brittle [1]. Nevertheless, cracking is shown to be facilitated by the shear stress driven, normally limited, dislocation flow that, on molecular dynamics and dislocation pile-up model bases, is shown to be especially prone to producing localized hot spot heating for explosive initiations. Such model consideration is in agreement with greater dropweight heights being required to initiate smaller crystals. The crystal size effect carries over to more difficult combustion occurring for compaction of smaller crystals. The total results relate to dual advantages of greater strength and reduced mechanical sensitivity accruing for the development of nanocrystal formulations. In consequence, also, several levels of dislocation-assisted modeling are described for initiation mechanisms under shock wave loading conditions.
Twórcy
  • Center for Energetic Concepts Development, University of Maryland, College Park, MD 20742, U.S.A.
Bibliografia
  • [1] Armstrong R. W, Elban W L., Dislocations in Energetic Crystals, (Dislocations in Solids, Nabarro F. R. N., Hirth 1. P., Eds.), Elsevier B.Y.,Amsterdam, 2004, Vol. 12, Chap. 69, pp. 403-446.
  • [2] Klapper H., Dejects in Non-metal Crystals (Characterization of Crystal Growth Defects by X-ray Methods, Tanner B. K., Bowen H. K., Eds.), Plenum Press, N.Y 1980,p.133.
  • 3] Farabaugh E. N., Ph.D. Thesis, University.of Maryland, 1977; see Armstrong R. w., [Characterization of Materzals by X-ray Diffraction Topography, (Crystal Properties and Preparation), Trans. Tech. Publ., Switzerland 1988, Vo!. 16, p. l.
  • [4] Van der Steen A c., Duvalois W, What do Explosive Partieles Look Like (ONR/TNO Workshop on Desensitization of Explosives and Propellants, Van der Steen AC., ed.: TNO Prins Maurits Laboratory, Rijswijk, The Netherlands 1991,Vol. 3, p. 1.
  • [5] Armstrong R. W, Dislocation Mechanisms for Shock-induced Hot Spots, J. de Phys. IV-Coli. 5, C4-89, 1995.
  • [6] McDermott I. T, Phakey P. P., A Method of Correlating Dislocations and Etch Pits: Application to Cyclotnmethylene Tnnatramme, J. Appl. Phys., 1971, 4, 479; An X-ray Topographic Study of Defect Structure, Phys. Stat. Sol., (a), 1971, 8, 505.
  • [7] Lang A. R., X-ray Diffraction Topography, (Diffraction and Imaging Techniques in Materiais Science, Amelinckx S., Gevers R. and van Landuyt 1., Eds.), North-Holland Publ.,Amsterdam 1978, Vol. 11,p. 678.
  • [8] Hirth 1. P., Lothe 1., Theory oj Dislocations, McGraw-Hill Book Co., NY, Part 2, 1968, p. 201.
  • [9] Armstrong R. W, Elban W L., Cracking at Hardness Microindentations in RDX Explosive and MgO Single Crystals, Mater. Sci. Eng., AlU, 1989, 35.
  • [10] Frank F. c., Lawn B. R., On the Theory ofHertzian Fracture, Proc. Roy. SOC. Lond. A299, 1967, 291.
  • [11] Armstrong R. W, Raghuram AC., Anisotropy of Microhardness in Crystals, (The Science of Hardness Testing and Its Research Applications, Westbrook 1. H., Conrad H., Eds.) ASM, Metals Park, OH, 1973, p. 174.
  • [12] Hagan J. T, Chaudhri M. M., Fracture Surface Energies ofHigh Explosives PETN and RDX, J. Mater. Sci., 1977, 12,1055.
  • [13] Yoo K.-C., Rosemeier R. G., Elban W L., Armstrong R. W, X-ray Topography Evidence for Energy Dissipation at lndentation Cracks in MgO Crystals, J. Mater. Sci. Lett., 1984,3,560.
  • [14] Elban W L., Rosemeier R. G., Armstrong R. W, Summary Report: Microstructural Origins of Hot Spots in RDX Explosive and Several Reference Inert Materiais, Naval Surface Weapons Center, Silver Spring, MD, Report NSWC MP 84-358, 1984.
  • [15] Lawn B. R., Fuller E. R., Equilibrium Penny-like Cracks in Indentation Fracture, J. Mater. Sci., 1975, 10,2016.
  • [16] Elban W L., Surface Energies ofHigh Explosives PETN and RDX from Contact Angle Measurements, ibid., 1979, 14, 1008,.
  • [17] Hammond B. L., Armstrong R. W, Recovered Elastic and Plastic Strains at Residual Microindentations in an MgO Crystal, Philos. Mag. (Lett.), 1988, 57, 41.
  • [18] Elban W L., Armstrong R. W, Russell T P., Plasticity fInterfacial Energy Influences on Combustion-driven Cracking of RDX Energetic Crystals, Phi/os. Mag., 1998, A78,907.
  • [19] Armstrong R. W, Robinson W H., Combined Elastic and Plastic Deformation Behavior from a Continuous Indentation Hardness Test, New Zealand J. Sci., 1974,17,429.
  • [20] Lawn B. R., Hertzian Fracture in Single Crystals with the Diamond Structure, J. Appl. Phys., 1968, 39,4828.
  • [21] Armstrong R. w., Elban W. L, ONR Workshop on Energetic Material Initiation Fundamentals, Los Alamos Nat. Lab., Chem. Pub/. Injorm. Agency, CPIA Publ., 1987,475,p.171.
  • [22] Dick l J., Mulford R N., Spencer W. l, Pettit D. R., Garcia E., Shaw D. c., Shock Response of Pentaerythritol Tetranitrate, J Appl. Phys., 1991, 70,3572.
  • [23] Hoffsommer J. C., Glover D. J., Elban W. L., Quantitative Evidence for Nitroso Compound Formation in Drop- Weight Impacted RDX Crystals, J. Energetic Mater., 1985,3,149.
  • [24] Behrens R. Jr., Bulushu S., Thermal Decomposition of Energetic Materials. 3. Temporai Behaviors ofthe Rates ofFormation ofthe Gaseous Pyrolysis Products from Condensed Phase Decomposition of 1 ,3,5- Trinitrahexahydro-s-triazine(RDX), J. Phys. Chem., 1992, 96, 8877.
  • [25] Gilman l l, Direct Evidence oj Chemical Reactions Induced by Shear Strains, (Synthesis, Characterization, and Properties of' Energetic/Reactive Nanomaterials, Armstrong R. w., Thadhani N. N., Wilson W H., Gilman J. J., Simpson R L., Eds.) Materials Research Society, Warrendale, PA, 2004, Proc., Vol. 800, pp. 287-297.
  • [26] Bowden F. P., Yoffe A. D., Initiation and Growth oj Explosion in Liquids and So lids , Cambridge University Press, London 1952; Fast Reactions in Solids, Butterworth Scientific Publ., London 1958.
  • [27] Heavens S. N., Field l E., The Ignition of a Thin Layer ofExplosive by Impact, Proc. Roy. Soc. Lond., 1974,A338, 77.
  • [28] Armstrong R w., Coffey C. S, Elban W. L., Adiabatic Heating at a Dislocation Pile-up Avalanche, Acta Metali., 1982,30,2111-2118.
  • [29] Armstrong R. w., Plasticity: Grain Size Effects II, (Encyclopedia of Materials: Science and Technology - Updates, Bischow K. H. J., Cahn RW., Flemings M. C., Kramer E. J., Mahajan S., Veyssiere P., Eds.) Elsevier Sci. Ltd., Oxford, UK, 2005.
  • [30] Armstrong R w., Coffey C. S., De Vost V F, Elban W. L., Crystal Size Dependence for Impact Initiation ofCyclotrimethylenetrinitramine, J. Appl. Phys., 1990, 68,979.
  • [31] Nielson A T., Impact Sensitivity Versus Particie Size jor RDX and Octanitrobenzidene (CL-I2), (Working Group Meeting on Sensitivity of Explosives, Center for Energy Technology and Research), New Mexico Institute ofTechnology, Soccoro, 1987, p. 256.
  • [32] Armstrong R. w., Kline K., Kramer M. P., Wilson W. H., The Power of Energetic Nanomaterials (Twenty-Ninth International Pyrotechnics Seminar Proceedings, Schelling F. J., Eds.), IPSUSA, Inc., 2002, p. 239 (Abstract for unpublished presentation).
  • [33] Armstrong R. w., Ramaswamy A. L., Field l E., Thermomechanicallnfluences on the Combustion ofR DX Crystals, (ONRISNPE/ONERA Workshop on Combustion Mechanisms, Armstrong R. w., Eds.) ONR, London, UK 1991, p. 168.
  • [34] Armstrong R w., Clark C. F, Elban W. L., Influence oj 'Micro-cracking on Pressuredependent Energetic Crystal Combustion, (Combustion of Energetic Materials, Kuo K. K., DeLuca L., Eds.) Begell House, Inc., NY 2003, p. 354.
  • [35] Gonthier K. A., Modeling and Analysis of Reactive Compaction for Granular Energetic Solids, Technical Report AFRL-MN-EG-TR-2001-7091, Eglin AFB, August, 2001.
  • [36] Jacobs S. J., Sandusky H. w., Elban W. L., Quasi-static Compaction of Porous Propellant Beds. I. Modeling Bali Powder Experiments with Deformed Spheres in a Regular Lattice, Powder Technology, 1996, 89, 209-217.
  • [37] Gray III G. T., Meyers M. A., Thadhani N. N., Vecchio K. S., Symposium on Dynarnic Deformation, Metali. Mater. Trans., 35A, 2004, pp. 2542-2745.
  • [38] Smith C. S., Metallographic Studies of Metals after Explosive Shock, Trans. TMS-AIME, 1958,212,574.
  • [39] Arnold w., Dynamische Werkstoffverhalten von Armco-Eisen bei Stosswellenbelastung, Fortschritt-Beriche VDI- Verlag Gmbh, Dusseldorf Germany 1992.
  • [40] Armstrong R. w., Arnold w., Zerilli F. J., Grain Size Dependence of Shock-induced Twinning Stresses for Armco Iron (International Workshop on New Models and Hydrocodes for Shock Wave Processes in Condensed Matter), Edinburgh, UK, Chemical Physics (Russian), in print, 2002.
  • [41] Approches Microscopique et Macroscopique des Detonations, Odiot S. (Eds.) J de Physique, Coli C4, 1987, Suppl. 9, 48, pp. 1-433.
  • [42] Gilman J. J., Shear-induced Metallization, Phi/os. Mag. B, 1993, 67,207, Chemical Reactions at Detonation Fronts in Solids, Phi/os. Mag. B, 1995, 71, 1057.
  • [43] Armstrong R. w., Sandusky H. w., Miller R. S., Indentation Hardness Testing, Defect Structure, and Shock Model for RDX Explosive Crystals, (ONR Workshop on Dynamie Deformation, Fracture and Transient Combustion), Chemical Propulsion InformationAgency, CPIAPubl., 1987, 474, p. 77.
  • [44] Bandak E A., Armstrong R. w., Douglas A. S., Dislocation Structure for One-dimensional Strain in a Shocked Crystal, Phys. Rev. B, 1992, 46, 3228.
  • [45] Bandak EA., Tsai D. H.,Armstrong R. w., Douglas A. S., Formation of Nanodislocation Dipoles in Shock-compressed Crystals, Phys. Rev. B, 1993,47, 11681.
  • [46] Lassila D. H., Shien T., Cao B.Y., Meyers M. A., Effect of Low-temperature Shock Compression on the Microstructure and Strength of Copper, Metali. Mater. Trans., 2004, 35A, 2729-2739.
  • [47] Tsai D. H., Structural Defects and "Hot Spot" Formation in a Crystalline Solid under Rapid Compression.I. Vacancy Clustersand Slip bands,J Chem. Phys., 1991, 95, 7497.
  • [48] Tsai D. H., Armstrong R. w., Defect-enhanced Structural Relaxation Mechanism for the Evolution of Hot Spots in Rapidly Compressed Crystals, J Phys. Chem., 1994, 98,10997.
  • [49] Germann T. C., Tanguy D., Holian B. L., Lomdahl T. S., Mareschal M., Ravelo R., Dislocation Structure Behind a Shock front in FCC Perfect Crystals, Atomistic Simulation Results, Metall. Mater. Trans., 2004, 35A, 2609-2615.
  • [50] Dick J. J., Effect of Crystal Orientation on Shock Initiation Sensitivity of Pentaerythritol Tetranitrate Explosive, Appl. Phys. Lett., 1992, 60,2494
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT1-0036-0065
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.