PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Computational Investigation of a Novel Explosive: DNTF

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Computational investigation including molecular structure, crystal density, heat of formation, relative specific impulse, heat of detonation, detonation velocity and pressure on dinitrofurazanfuroxan (DNTF) was performed by quantum chemistry (density functional theory and Beck 3LYP hybrid density functional with 6-31G (d, p) basis set), molecular mechanics (Dreiding forcefield) and Monte Carlo methods. It can be deduced that DNTF is moderately sensitive and the N9-O10 bond is the weakest in the molecule and the trigger spot of decomposition by the molecular structure analyses. The mean values of the computational results of DNTF are: heats of formation of gas (HOF) and crystal state - 1113.8 and 992.5 kJ mol-1 respectively; heat of detonation (HOD) - 7119.0 kJ kg-1; relative specific impulse vs. HMX - 1.135; detonation velocity and pressure - 9.10 km s-1 and 38.3 GPa respectively. As a result, DNTF is more powerful than HMX and is a promising melt-cast explosive for its possessing high power, moderate sensitivity, low melting point and thermal stability. Additionally, the simulation data is consistent with experiment. So these methods can also be applied to other HEDM (high energetic density materials) designs.
Rocznik
Strony
45--53
Opis fizyczny
Bibliogr. 13 poz.
Twórcy
autor
autor
autor
autor
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang, Sichuan, P R China (621900), zcy19710915@yahoo.com.cn
Bibliografia
  • [1] PhilIp F. P., Gregory S .L, Alexander R. M., Robert D. S., A Review of Energetic Materials Synthesis, Thermochimica Acta, 2002, 384,187-207.
  • [2] Ou Y. X., Synthesizing Chemistry oj Modern Explosives (in Chinese) Beijing, Weapon Industry Publishing, 1998.
  • [3] Huanxing Hu, Zhizhong Zhang, Fengqi Zhao et al., Acta Armamentarii (in Chinese), 2004,25(3), 155-158.
  • [4] Hahre W. J, Radom L., Schleyer P. V. R., Pole J. A, Ab Initio Molecular Orbital Theory, Wiley, New York 1986, 386.
  • [5] Karfunkel H. R., Gdanitz J., An ab Initio Prediction Method of Molecular Crystal Structure,J Comp. Chem., 1992, 13, 1171.
  • [6] Mayo S. L., Olafson B. D., Goddard III W. A, "DREIDING: a Generic Forcefield", J Phys. Chem., 1990,94,8897-8909.
  • [7] Karfunkel H. R., Wu Z. J., Burkhard A, Rihs G., Sinnreich D., Burger H. M., Stanek, Occurrence of Space Groups of Molecular Crystal, J Acta Cryst., 1996, B52, 555.
  • [8] Kamlet M. J., Jacobs S. J., Detonation Velocity Calculation of Energetic Materials Containing C, H, O and N,J Chem. Phys., 1968,48,23.
  • [9] Politzer P., Murray J. S., Grice M. E., Chemistry of Energetic Materiais, Academic Press: San Diego, Califomia 1991, 77-93.
  • [10] Mayer R., Explosives, VCH, Weinheim 1987, 243.
  • [11] Cerius. Revision 4.6, Acceryls Inc, 2001.
  • [12] Gaussian 98, Revision All, Frisch M. J., Trucks G. W. et.al, Gaussian, Inc., Pittsburgh PA 1998.
  • [13] Singh C. u., Kollman, P. A, An Approach to the Application of Free Energy Perturbation Methods using Molecular Dynamies, J Comp. Chem., 1984, 5,129.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT1-0036-0056
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.