
UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY
IM. JANA I J DRZEJA NIADECKICH W BYDGOSZCZY

ZESZYTY NAUKOWE NR 253
TELEKOMUNIKACJA I ELEKTRONIKA 12 (2009), 57-71

PARALLEL 4X4 TRANSFORM ON BIT – SERIAL SHARED
MEMORY ARCHITECTURE FOR H.264/AVC

Grzegorz Rubin

Department of Computer Science
Bialystok University of Technology

Bialystok, Poland
gregor@wi.pb.edu.pl

Summary. The aim of this paper is to present an implementation and simulation of
parallel 4x4 transform on bit-serial shared memory architecture for H.264/AVC.
Compared with the existing parallel implementations, the proposed architecture
reduces interconnection resources of physical elements of FPGA device. The re-
sults of simulation show that the transform can be realized in real–time on bit–
serial arithmetic. The paper concludes with a summary.

Keywords: FPGA, shared memory, video coding

1. INTRODUCTION

H.264/AVC is the latest standard of video coding for applications used in mobile
devices. There are few known ways of its implementations [1, 2, 3]. Reduction of power
consumption or increasing an image quality and real-time processing are the main goals
for portable multimedia devices. Therefore, H.264/AVC can be used for video coding in
wireless video applications if such requirements will be fulfilled.

Long-range bit-parallel data links provide high data rates at the cost of large chip
area, routing difficulty, noise and power [4]. Additionally, such links are often utilized
only a small portion of the time, but dissipate leakage power at all times. Parallel link
performance is bounded by available clock rate and by clock skew, delay uncertainty
due to process variations, cross-talk noise, and layout geometries. There is an alterna-
tive to bit-parallel interconnects, mitigating the issues of area and leakage power, when
bit-serial few wires are used. However, to provide the same throughput as an N-bit
parallel interconnect, the serial link must operate N times faster. For bit-serial imple-
mentation, H.264/AVC has relatively higher complexity than other video standards,
which might result in increase of power consumption and difficulty of real-time proc-
essing.

In this paper, a new parallel 4x4 transform architecture based on bit-serial shared
memory architecture is proposed to improve processing rate for H.264/AVC and reduce
power consumption. This paper is organized as follows. H.264 transform algorithms are
described in section 2. The new architecture and scheduling method by special toolbox

Grzegorz Rubin 58

are presented in section 3. Simulation and implementation results are shown in section
4. Finally, conclusion is given in section 5.

2. 2-D INTEGER TRANSFORM IN H.264

The H.264/AVC standard is known as: ISOMPEG4 Part 10, ITU-T H.264, and the
Advanced Video Coding (AVC)[5]. This paper discusses the Residual Transform (RT)
block, although the standard specifies a complete decoder. Both, the encoder and the
decoder use this block, and perform a transform on a macro block level. The transform
block in H.264/AVC is one of the key components and there are several aspects of its
design that are considered[1]. First, the transform is orthogonal, separable, low gain,
and has a strong decorrelating performance. Second, the transforms are performed in
integer arithmetic, because floating point arithmetic is harder to implement in hardware.
Third, the transform block is designed to reduce the memory access and computation
overhead. There are three different transforms used in H.264/AVC, one for 4x4 DC
luma coefficients, another for 2x2 chroma DC coefficients and a third for all other 4x4
residual data [3]. It has been shown through complexity analysis [4] that the 4x4 resid-
ual data transform takes up majority of computation, therefore it will be used as an
example in this paper. However, the proposed architecture can be used to implement
other transforms. The ability of adapting proposed designs to incorporate other calcula-
tions will be discussed. The authors of H.264/AVC start with a well known two dimen-
sional Discrete Cosine Transform (DCT). This transform can be represented by:

[]

−−

−−

−−

−−

−−

−−
==

caba

baca

baca

caba

X

cbbc

aaaa

bccb

aaaa

AXAY T
 (1)

where:

===
8

3
cos

2

1
,

8
cos

2

1
,

2

1 ππ
cba

Then matrix equation (1) can be factorized into equivalent form:

() [] ⊗

−−

−−

−−

−−

−−

−−
=⊗=

22

22

22

22

111

111

111

111

11

1111

11

1111

babbab

abaaba

babbab

abaaba

d

d

d

d

X

dd

dd
ECXCY

T
 (2)

Where E is matrix scaling factors and the symbol ⊗ indicates that each element of

CXCT is multiplied by the scaling factor in the same position in matrix E. Values a and
b are the same as listed in (1) and d=c/b.

Parallel 4x4 transform on bit – serial shared memory architecture... 59

More simply implementation of the transform can be done, when we modify con-
stants like this:

2

1
,

5

2
,

2

1
=== dba

Therefore final forward transform becomes:

() [] ⊗

−−

−−

−−

−−

−−

−
=⊗=

4242

22

4242

22

1121

2111

2111

1121

1221

1111

2112

1111

22

22

22

22

babbab

ab
a

ab
a

babbab

ab
a

ab
a

XECXCY
T

(3)

CXCT part is the core of transform and can be carried out with integer arithmetic

using only additions, subtractions and shifts. The last operation ⊗E requires multiplica-
tion, which can be done into the quantization process.

Several hardware design methods for the implementation of the 2-D integer trans-
form have been developed in recent years. In this paper an architecture which performs
one dimensional transform on a column of input data by a matrix multiplication archi-
tecture was used [2] as shown in Fig. 2. Figure 1 and formula (4) show 1-D transform
and that operation needs to be performed four times along the vertical dimension and
four times along the horizontal dimension on X. Each of these eight 1-D column/row
transforms requires four adders and four subtractors. In the paper [3] with this novel
architecture it is possible to perform the whole DCT in one cycle, where the cycle dura-
tion is close to a carry propagation through a 64–bit adder. The large amount of hard-
ware used is the drawback of this design, which totals 32 16–bit adders and 32 16–bit
subtractors. This amount of hardware can be reduced by introducing various pipeline
splits. An addition of a register stage in the middle of the combinational. This papers
based on given in figure 2 transform what is detailed in[3], but hardware implementa-
tion uses shared memory architecture approach. Moreover, proposed approach uses bit-
serial arithmetic and synchronous calculations.

() ()

() ()

() ()

() ()

'
0 0 3 1 2

'
1 0 3 1 2

'
2 0 3 1 2

'
3 0 3 1 2

,

2 ,

,

2,

x x x x x

x x x x x

x x x x x

x x x x x

= + + +

= − ⋅ + −

= + − +

= − + − ⋅

 (4)

Grzegorz Rubin 60

Fig. 1. 1-D transform
Rys. 1. Przekszta cenie 1-wymiarowe

T
CXCY =

Fig. 2. Parallel 2-D transform
Rys. 2. Równoleg e przekszta cenie 2-wymiarowe

Parallel 4x4 transform on bit – serial shared memory architecture... 61

3. PROPOSED BIT-SERIAL ARCHITECTURE

In the following subsections two usages of hardware architectures of the transform
block are presented. The first set of designs is concentrated on unit of bit-serial shared
memory architecture, and the second set of designs concentrate on parallel usage of bit–
serial blocks. In addition, the description of the two approaches could be useful for
designing other area and timing optimized designs.

3.1. SHARED MEMORY ARCHITECTURE

Shared-memory architecture approach (SMA) is detailed in [6]. Figure 3 shows
proposition of that architecture. The idea is very simple. In order to simultaneously
provide the PEs (Processing Elements) with input data, the shared memory is parti-
tioned into blocks. PEs usually perform simple memoryless mapping of the input values
to a single output values. Using a rotating access scheme, each processor gets access to
the memories once per N (N – number of PE’s) cycles. During this time, processor
either writes or reads data from memory. All processors have the same duration time
slot to access to the memories and access conflict is completely avoided. Examples of
usage and algorithm implementations can be found in [7]. Presented paper presents
some modifications of architecture. Separate input and output registers were replaced by
registers with input/output interface. There is possible to save result of serial calculation
into free cells of input registers during shifting data into processing elements. The sec-
ond modification is 16–bit width of data extension.

Fig. 3. Shared Memory Architecture unit
Rys. 3. Jednostka Architektury o wspó dzielonej pami ci

Grzegorz Rubin 62

3.2. PARALLEL FORM OF SMA

One SMA unit can calculate the algorithm witch depends on “CU vector” bus sta-
te. Implementation of integer residual transform on one SMA requires additions and
multiplications. Because of multiplier value on bit-serial arithmetic shifting can be re-
placed against multiplication. For each block of the 2-D 4x4 integer transform the same
calculations has to be done. Therefore, we can repeat the same operations eight times on
the same SMA unit or take parallel connection form of few identical SMA blocs with
the same dynamic instructions of scheduling (Fig.4). Note that, to save input pins in
physical device we must share input lines for data and control vectors. The input data
are coming in 16-bit parallel form step by step, but calculations in 16-bit serial form.
H.264/AVC supports 8-bit residual pixel data, but it is likely that this will be extended
in the future [2]. The time period between two next data depends on bit-serial calcula-
tions. Proposed approach of calculations takes 879 steps for one block. During that we
can use input pins for data of next 4x4 block, but we can’t use input of control vector.
Otherwise the control vector is the same for each block, but if we want to use it for
parallel calculations, delay by few steps should be applied according to proper input
data. One of possibilities based on additional instruction register for every SMA block.
Then delayed input of control vector can be applied and the additional set of data calcu-
lated.

Fig. 4. Two parallel SMA units in the same operating mode
Rys. 4. Dwie równoleg e jednostki SMA w jednakowym trybie pracy

We can use set of SMA blocks, but note that, the number of blocks can’t exceed re-
sources of physical device and steps of calculation of the first SMA unit. Figure 5
shows proposition of three SMA connected architecture.

Parallel 4x4 transform on bit – serial shared memory architecture... 63

Fig. 5. Three parallel SMA units in the same operating mode with sharing input/

output pins
Rys. 5. Trzy równoleg e jednostki SMA w jednakowym trybie pracy ze wspó dzie-

lonymi pinami wej cia/wyj cia

3.3. SMA TOOLBOX FOR CONTROL UNIT

For fast and efficient scheduling of SMA elements an application was designed.
Using that tool the designer can very quickly generate control unit vectors for any algo-
rithm realized on proposed SMA architecture. That’s very helpful during simulation
process, because of width of 46-bit vector. It’s a big probability of setting wrong values
into the control vectors witch enables and runs elements of SMA architecture, especially
in bit serial arithmetic. Proposed architecture was designed that it’s possible to run eve-
ry part inside the SMA in any time period, therefore the user decide of proper schedul-
ing of algorithm realization. Such architectures are dynamic reconfigurable, so modifi-
cation of control vector can change scheduling of SMA unit and another algorithm can
be realized without any physical changes. The interface of SMA toolbox is presented
on figure 6. Upper right corner consist scheme of used architecture for scheduling. Cho-
sing „operation“ IN or OUT the left side boxes are enabled or disabled, then DATA IN
or DATA OUT options are available to set. There is also possibility to load or save the
results of scheduling.

Grzegorz Rubin 64

Fig. 6. SMA compiler interface
Rys. 6. Interfejs kompilatora SMA

Proposed SMA compiler is very simple at this time. There are two ways of pro-
gramming required control vectors – by setting each step using buttons and checkboxes
or writing by text in RTL notation. Then just clicking “Generate control vector” in the
control vectors window we can see expected set of bits. For example input two set of
data, add them together and put it out, RTL notation is as follow:

IN IN_L=>RL1.1 IN_R=>RR1.1

ADD RL1.1,RR1.1

OUT RL1.1=>OUT_L RR1.1=>OUT_R

and control vector listed bellow:

prog(0) <= "0000000011111100111111000000000000000000000000";

--IN IN_L=>RL1.1 IN_R=>RR1.1

prog(1) <= "1000";

--ADD RL1.1, RR1.1

prog(2) <= "0010000001000001010000010000000000000000000000";

prog(3) <= "0010000001000001010000010000000000000000000000";

prog(4) <= "0010000001000001010000010000000000000000000000";

prog(5) <= "0010000001000001010000010000000000000000000000";

prog(6) <= "0010000001000001010000010000000000000000000000";

prog(7) <= "0010000001000001010000010000000000000000000000";

prog(8) <= "0010000001000001010000010000000000000000000000";

prog(9) <= "0010000001000001010000010000000000000000000000";

Parallel 4x4 transform on bit – serial shared memory architecture... 65

prog(10) <= "0010000001000001010000010000000000000000000000";

prog(11) <= "0010000001000001010000010000000000000000000000";

prog(12) <= "0010000001000001010000010000000000000000000000";

prog(13) <= "0010000001000001010000010000000000000000000000";

prog(14) <= "0010000001000001010000010000000000000000000000";

prog(15) <= "0010000001000001010000010000000000000000000000";

prog(16) <= "0010000001000001010000010000000000000000000000";

prog(17) <= "0010000001000001010000010000000000000000000000";

prog(18) <= "0010000001000001010000010000000000000000000000";

prog(19) <= "0000000011111101111111010000000000000000000000";

--OUT RL1.1=>OUT_L RR1.1=>OUT_R

Given example shows that we have strict rules of Processing Elements usage. They

can work together at the same time or one do nothing. That limitations are only because
of application and SMA architecture can do independent operations, but scheduling
must be done manually.

3.4. CONTROL VECTORS FOR 4-POINT 2-D TRANSFORM

For proper work of any algorithm, set of control vectors are required. Using SMA
compiler it’s possible to generate set of bit vectors for 4-point 2-D transform presented in
Figure 2. The SMA unit is able to calculate arithmetic operations such as adding, subtract-
ing, multiply and negation. Additionally it can store some temporary results of any calcu-
lation using two separate memory blocks. Therefore SMA unit can by applied for any
algorithm using proper control vectors. Because of paper space only the RTL notation for
input data and first part of calculations for residual transform is given bellow:
- read input data
IN IN_L=>RL1.1 IN_R=>RR1.1

- save input data into RAM L and R - address 0
OUT RL1.1=>RAM_L CELL 0 RR1.1=>RAM_R CELL 0

- read input data
IN IN_L=>RL1.1 IN_R=>RR1.1

- save input data into RAM L and R - address 1
OUT RL1.1=>RAM_L CELL 1 RR1.1=>RAM_R CELL 1

- read input data
IN IN_L=>RL1.1 IN_R=>RR1.1

- save input data into RAM L and R - address 2
OUT RL1.1=>RAM_L CELL 2 RR1.1=>RAM_R CELL 2

- read input data
IN IN_L=>RL1.1 IN_R=>RR1.1

- save input data into RAM L and R - address 3
OUT RL1.1=>RAM_L CELL 3 RR1.1=>RAM_R CELL 3

- read input data
IN IN_L=>RL1.1 IN_R=>RR1.1

- save input data into RAM L and R - address 4
OUT RL1.1=>RAM_L CELL 4 RR1.1=>RAM_R CELL 4

- read input data
IN IN_L=>RL1.1 IN_R=>RR1.1

- save input data into RAM L and R - address 5
OUT RL1.1=>RAM_L CELL 5 RR1.1=>RAM_R CELL 5

Grzegorz Rubin 66

- read input data
IN IN_L=>RL1.1 IN_R=>RR1.1

- save input data into RAM L and R - address 6
OUT RL1.1=>RAM_L CELL 6 RR1.1=>RAM_R CELL 6

- read input data
IN IN_L=>RL1.1 IN_R=>RR1.1

- save input data into RAM L and R - address 7
OUT RL1.1=>RAM_L CELL 7 RR1.1=>RAM_R CELL 7

- the first 1-D transform
IN RAM_L CELL 0=>RL1.1 RAM_R CELL 0=>RR1.1

IN RAM_L CELL 0=>RL1.2 RAM_R CELL 0=>RR1.2

ADD RL1.1,RR1.1 SUB RL1.2,RR1.2

OUT RL1.1=>RAM_L CELL 8

OUT RL1.2=>RAM_L CELL 9

IN RAM_L CELL 1=>RL1.1 RAM_R CELL 1=>RR1.1

IN RAM_L CELL 1=>RL1.2 RAM_R CELL 1=>RR1.2

ADD RL1.1,RR1.1 SUB RL1.2,RR1.2

OUT RR1.1=>RAM_R CELL 8

OUT RR1.2=>RAM_R CELL 9

IN RAM_L CELL 8=>RL1.1 RAM_R CELL 8=>RR1.1

IN RAM_L CELL 8=>RL1.2 RAM_R CELL 8=>RR1.2

ADD RL1.1,RR1.1 SUB RL1.2,RR1.2

OUT RL1.1=>RAM_L CELL 10

OUT RL1.2=>RAM_L CELL 11

IN RAM_L CELL 9=>RL1.1 RAM_R CELL 9=>RR1.1

SHL (MUL*2) RL1.1

IN RAM_L CELL 9=>RL1.2 RAM_R CELL 9=>RR1.2

SHL (MUL*2) RL1.2

ADD RL1.1,RR1.1SUB RL1.2,RR1.2

OUT RL1.1=>RAM_L CELL 12

OUT RL1.2=>RAM_L CELL 13

Presented transformation uses 8 identical programmed operations (1-D residual
transform), only memory addresses for temporary data differs. One operations takes 113
synchronous steps for 16-bit serial arithmetic. In this paper proposed approach uses one
SMA unit for one 4x4 set of data and calculates coefficient during 879 synchronous
steps. As was written previously for the test, two parallel connected SMA units were
used in Xilinx ISE simulator. Both have the same control vector and separate in-
put/output pins, so the units work together for two sets of data simultaneous. Proposed
SMA units can be connected in cascade or parallel form and number of units is limited
only by physical programmable device. Such approach allows for better scheduling of
algorithm, for example simulated transformation can be calculated by eight SMA units
for one 4x4 block. According to Figure 2, firstly compute 4 of 1-D transformation in
parallel form, secondly next 4 computation. Then the result will be after 226 steps. Fle-
xible scheduling allows for many combinations of calculations.

Parallel 4x4 transform on bit – serial shared memory architecture... 67

3.5. SCHEDULING USING PETRI NETS

Scheduling of parallel processes can be done based on Petri Nets theory. There are
few know examples of that approach [8, 9, 10]. For proposed approach based on shared
memory architecture an application was desing. Presented environment allows on
graphical designing and simulation of algorithms step by step. Formal analysis, possibil-
ity of hierarchical designing and simulation are allowed too. That is useful for error
correction by simulation of each part of designed algorithms. As the result of simulation
of presented graph on figure 7 corresponding to SMA unit for bit-serial calculations we
have control vectors for FPGA device. It works similar to previous toolbox described in
section 3.3.

Fig. 7. Petri Net for SMA unit
Rys. 7. Sie Petriego przedstawiaj ca jednostk SMA

Proposed approach allows for deadlock prevention in parallel processes. Every

transition corresponds to enable signal in physical device. Figure 8 presents piece of
simulation result. Two processing elements works together but PE1 is delayed by two
steps. Moreover there is possibility to design hierarchical structure of the net. Every
transition and place can be design as the subnet. Simulation of hierarchical structure is
also possible. The control vectors of simulation result can be written as a text file, then
control vectors can be loaded to Xilinx simulator for FPGA device simulation. Such
approach allows for better scheduling because of running every elements of architecture
as fast as it’s possible, when proper data are ready for processing.

Grzegorz Rubin 68

Fig. 8. Piece of simulation of Petri Net for SMA unit

4. IMPLEMENTATION AND SIMULATIONS RESULTS

The transformations were synthesized with Xilinx Project Navigator 10.1 for
Virtex II xc2v3000. Top design is schematic (Fig. 9) and realized according with pro-
position on Fig. 4. Two blocks of data:

=

181383

2015105

171272

161161

1X

=

228225225224

226226225224

226225225224

226225226255

2X

were set as input in Xilinx ISE Simulator and the result was purchased:

−

−

−−

=

00016

00012

00028

200140164

1Y

−

−

−−

−−

=

5452

5303

03151

91183605

1Y

Parallel 4x4 transform on bit – serial shared memory architecture... 69

The “controlUnit” block gets control vectors from the text file which was generated by
SMA compiler, reads line by line and puts the 46-bit vector into “C_Signal” of “arch”
units. There is only one main clock signal for SMA architecture.

Fig. 9. Parallel form of SMA units
Rys. 9. Po czenie równoleg e jednostek SMA

Simulation results shows that SMA units works as were programmed. Figures
10,11 shows start and the end of simulation process.

Fig. 10. Begin of simulation process
Rys. 10. Pocz tek procesu symulacji

Grzegorz Rubin 70

Fig. 11. End part of simulation process
Rys. 11. Ko cowy fragment procesu symulacji

 Table 1. Device utilization summary
 Tabela 1. Podsumowanie wykorzystania zasobów uk adu

Number of Slices: 1243 out of 14336 8%
Number of Slice Flip Flops: 578 out of 28672 2%
Number of 4 input LUTs: 2192 out of 28672 7%
Number of bonded IOBs: 173 out of 684 25%
Number of 4 BUFGMUXs: 1 out of 16 6%

The same results of simulations using control vectors from SMA toolbox and Petri

Nets approach are the same, but the second case allows for clock steps reduction. For
better comparison of effectiveness for parallel processing, more tests will be done in
the future work.

5. SUMMARY

In this paper, a new parallel 4x4 transform architecture based on bit-serial shared
memory architecture was shown to improve processing rate for H.264/AVC and reduce
power consumption. Reducing the power consumption is achieved by bit-serial commu-
nications as an alternative to bit-parallel interconnects. Simulations results of proposed
SMA approach shows that calculations for one 4x4 set of data can be done in 879 steps
of one SMA unit. Real time processing of FPGA device working with 100 MHz fre-
quency, with implemented SMA unit can calculate 113705 of 4x4 blocks with 16-bit
data. For video frame size 176x144 (3G standard) we have 1584 of 4x4 blocks. One
SMA unit can calculate transformation with speed about 71 fps, so for 30 fps we can
lower the clock rate to 50MHz. Applying proposed SMA approach for higher resolu-
tions we need more SMA units connected in parallel form. For example 640x480
frames for 30 fps residual transform requires device of 100 MHz clock rate and 5 SMA
units connected in parallel form.

Parallel 4x4 transform on bit – serial shared memory architecture... 71

BIBLIOGRAPHY

[1] H.S. Malvar, A. Hallapuro, M. Karaczewicz, L. Kerofsky, 2003: Low-Complexity
Transform and Quantization in H.264/AVC. IEEE Trans. Circuits Syst Video
Technol., vol. 13, no. 7.

[2] E. Hong, E. Jung, H. Fraz, D. Har, 2005: Parallel 4×4 transform architecture based
on bit extended arithmetic for H.264/AVC. Proc. Int. Sym. On Circuits and
Systems, vol. 1, pp. 95- 98.

[3] R. Kordasiewicz, S. Shirani, 2007: On Hardware Implementations Of DCT and
Quantization Blocks for H.264/AVC. Journal of VLSI Signal Processing 47, pp.
189-199.

[4] R. Dobkin, A. Morgenshtein, A. Kolodny, R. Ginosar, 2008: Parallel vs. serial on-
chip communication. Proc. of the 2008 International Workshop on System-Level
Interconnection Prediction, NewCastle, pp. 43-50.

[5] ITU-T Rec. H.264/ISO/IEC 11496-10, 2002: Advanced video coding. Final
Committee Draft, Document JVT-G050, December.

[6] L. Wanhammar, 1999: DSP integrated circuits. Academic Press, USA.
[7] G. Rubin, M. Omieljanowicz, A. Petrovsky, 2007: Reconfigurable FPGA-based

hardware accelerator for embedded DSP,” MIXDES’2007, Ciechocinek, pp.147-151.
[8] M. Adamski, M. W grzyn, 1994: Hierarchically Structured Colored Petri Net

Specification and Validation of Concurent Controllers. Proc. in 39th International
Scientific Colloquium, IWK’94, Ilmenau, Germany, Band 1, pp. 517-522.

[9] A. W grzyn, 2003: The symbolic analysis of binary control units using given
methods of Petri nets. Rozprawa doktorska, Politechnika Warszawska (in Polish).

[10] . . , 1988: Techniques and microprocessors tools of fast and wideband
processing of real-time processors, H T , (in Russian).

RÓWNOLEG E PRZEKSZTA CENIE 4X4 NA BITOWO-SZEREGOWEJ
ARCHITEKTURZE O WSPÓ DZIELONEJ PAMI CI

DO ZASTOSOWA H.264/AVC

Streszczenie

Praca zawiera opis implementacji oraz symulacji równoleg ego przekszta ce-
nia 4x4 stosowanego w H.264/AVC, bazuj c na bitowo-szeregowej architekturze
o wspó dzielonej pami ci. W porównaniu z istniej cymi rozwi zaniami implemen-
tacji równoleg ej, proponowana architektura obliczeniowa redukuje liczb linii
po cze wewn trznych fizycznego uk adu FPGA. Zawiera ona równie wyniki
symulacji, pokazuj ce mo liwo wykonywania przekszta cenia w czasie rzeczywi-
stym, przy zastosowaniu arytmetyki szeregowej.

S owa kluczowe: FPGA, pami wspó dzielona, kodowanie wideo

