
UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY

IM. JANA I J DRZEJA NIADECKICH W BYDGOSZCZY

ZESZYTY NAUKOWE NR 253

TELEKOMUNIKACJA I ELEKTRONIKA 12 (2009), 43-56

USING FPGA AND JAVA IN RAPID PROTOTYPING

 OF A REAL-TIME H.264/AVC DECODER

Marek Parfieniuk1, Alexey Petrovsky2, Andrew Stankevich2,

Michail Kachinsky2, Alexander Petrovsky1

1 Department of Real-Time Systems

Faculty of Compute Science

Bialystok Technical University

ul. Wiejska 45a, 15-351 Bialystok, Poland

2 NTLab: New Technologies Laboratory

Minsk, Belarus

www.ntlab-soc.com

Summary: This paper reports on an attempt to implement a real-time hardware

H.264 video decoder. The initial results of the project are presented: a customized

RISC core and some digital modules, both of which have been implemented in Xil-

inx FPGA. The former has to serve as a host processor that supervises the latter,

which speed up the essential decoding subtasks. The system is designed and tested

using a software decoder and diagnostic tools, which are implemented in Java using

the object-oriented paradigm. Our experiences allow us to recommend the combina-

tion of FPGA and Java technologies as a good basis for rapid prototyping of ad-

vanced DSP algorithms.

Keywords: H.264 decoder, Plasma RISC, Xilinx FPGA, Java

1. INTRODUCTION

H.264/AVC (Advanced Video Coding: MPEG-4 Part 10) is the state-of-art stan-

dard video codec, which is recommended by both ITU-T and ISO/IEC [3, 6, 8, 15].

Designed to be flexible and network-friendly, it is expected to dominate the market of

multimedia devices and services in the near future. The most notable areas where H.264

is used are the Digital Video Broadcasting (DVB), Bluray Disc, 3GPP mobile commu-

nication, and video streaming over the Internet.

The main advantages of H.264 over its predecessors, especially over MPEG-2

Video (H.262), are adaptability to various applications and better bandwidth usage.

They have been achieved at the price of higher computational complexity and greater

memory requirements. Although the main principles of hybrid video coding are still

used, the subalgorithms: transform, prediction, motion compensation, as well as entropy

coding have been revised and given new options, which improve effectiveness but

decrease efficiency. Significant modifications of both bitstream format and decoding

M. Parfieniuk, A. Petrovsky, A. Stankevich, M. Kachinsky, A. Petrovsky 44

process limit reusing of existing software and hardware, so that new infrastructure

needs to be created. Since 2003, when the first version of the standard had been pub-

lished, many H.264-related products have been issued, like encoding engines, decoder

chips, software players, and bitstream analyzers. However, there are still reasons for

developing new solutions, because the existing ones often do not follow standard’s nu-

ances or recent extensions, or have deficiencies related to speed or power consumption.

As working in this field is interesting from both engineering and commercial

points of view, the authors have undertaken the task of developing a real-time hardware

H.264 decoder. Its novel architecture has to be not only computationally efficient but

also flexible from the design point of view. Namely, its modularization and recon-

figurability should guarantee that:

i) future extensions of the standard can easily be incorporated into the system with-

out entirely redesigning it,

ii) speed can be traded off for resource consumption,

iii) customized and optimized digital circuits can be synthesized which satisfy particu-

lar application requirements without wasting resources.

An additional decision was to widely use free-of-charge and open-source development

tools in order to keep investments small and to be able to customize the toolset in ac-

cordance with needs.

Because so far our team mainly specialized in speech processing, see e.g. [1] or

[11], in order to gain experience, we have split work between two directions. One is to

develop from scratch a reliable object-oriented model of the decoder and to implement

it in software. The second one is to design hardware modules using the resulting code

as a foundation for FPGA development and using the developed software to generate

data for functional verification. In order to achieve high productivity, the Java platform

has been used in object-oriented development. In addition to preventing errors that are

common in C programming, it was expected to facilitate building a consistent develop-

ment toolset adjusted to our needs.

The paper presents the initial results of the project, which are related to both soft-

ware and hardware, and justifies main design decision the authors made. After charac-

terizing H.264 briefly, we describe our software decoder core, applications based on it,

and the corresponding hardware architecture. The Plasma-NTLab processor is then

presented, which has been developed for the purpose of supervising the prototype plat-

form, including the decoding pipeline. Finally, FPGA designs of some modules that

speed up the decoding algorithm are shown. In particular, the transform unit is com-

pared with a known solution, in order to show that our methodology brings benefits.

2. H.264 VIDEO CODEC

The general scheme of the H.264 codec is shown in Fig. 1. Like the older stan-

dards, it is a hybrid algorithm that uses transform coding as well as motion-

compensated predictive coding to remove both spatial and temporal redundancy of

video signals. Better flexibility and compression efficiency have been achieved by only

improving subalgorithms [8, 19]. Both fine-grained partitioning of macroblocks into

smaller units and quarter-pixel accuracy allow motion estimation/compensation to be

more effective. Estimation precision is further improved by employing an in-loop de-

Using FPGA and Java in rapid prototyping of a real-time H.264/AVC decoder

45

blocking filter which removes the blocking artifact before using a frame for prediction.

Temporal redundancy can be better reduced by allowing multiple (up to 16) reference

frames to be used and by making bidirectional prediction possible, in which future

frames can be referenced in addition to past ones. Removing spatial dependencies

among pixels via a decorrelating transform is enhanced by multi-mode intra prediction

of a block using adjacent fragments of the same frame. Moreover, transform size can be

switched between 4×4 and 8×8 in order to best fit macroblock contents. Finally, more

effective methods of entropy coding have been developed: Context-based Adaptive

Binary Arithmetic Coding (CABAC) and Context-Adaptive Variable Length Coding

(CAVLC) [15]. Specific needs of studio and wireless applications have been satisfied

by incorporating Fidelity Range Extensions (FRExt) [8] and Scalable Video Coding

(SVC) [18], respectively, into the standard.

Encoders, usually equipped with a lot of switches, allow for customizing output

bitstreams in order to best suit a particular usage of the codec. This has been rational-

ized by defining several H.264 profiles, which correspond to various trade-offs among

quality, bitrate, and computational requirements. Owing to these advanced techniques

and high flexibility, H.264 offers even two times better compression efficiency than

MPEG-2 Video and is much better suited to contemporary applications. However, de-

coding might require even four times more operations, even though in the new standard,

the Discrete Cosine Transform (DCT) has been replaced with efficient multiplierless

approximations.

Because of its complexity and little connection to previous standards, implement-

ing H.264 is not trivial, especially if a small and energy-efficient device is required to

operate in real time. Thus, there is a great interest in novel solutions in this field.

Deblocking Filter

Motion Estimation

Motion

Compensation

Transform

Scaling

Quantization

Scaling

Inv. transform

Entropy Coding

Input

video signal

Current

Reference

Frame Buffer

Intra Prediction Output

bitstream

Input bitstream

ENCODER

DECODER

Deblocking Filter

Motion Estimation

Motion

Compensation

Dequantization

Scaling

Inv. transform

Entropy

Decoding

Output video signal

Current/Reference

Frame Buffer

Intra Prediction

Fig. 1. The general scheme of the H.264 video codec

Rys. 1. Ogólny schemat kodeka wideo standardu H.264

M. Parfieniuk, A. Petrovsky, A. Stankevich, M. Kachinsky, A. Petrovsky 46

3. SOFTWARE PROTOTYPE

Our review of the existing support for implementing H.264 has shown that a lot of

information is accessible but they are distributed among books, papers, web pages, see

[3-8, 12, 13, 15-19]. Moreover, they usually are not conveyed readily, so that there are

no reliable implementation patterns and ready-to-use high-quality source code. Espe-

cially, the standard document and the reference software are very unclear and very

difficult to understand even for experienced developers. Thus we decided to design

from-the-scratch a software H.264 decoder that does not necessarily work with real-

time performance but forms a nice, well-documented foundation for developing and

testing hardware modules.

Such objectives have motivated us to employ the Java platform instead of the C or

C++ languages, which are commonly used for implementing DSP algorithms [9]. The

former is undoubtedly slower but greatly increases productivity and code quality [10].

Its strict type-control prevents many errors that can easily be made when using C, some

other bugs become trivial to detect, and finally, the language helps programmers with

object-oriented design. Moreover, there is no need for combining different open-source

tools/libraries or for relaying on platform-dependent commercial products. The standard

Java packages provide all that is necessary for creating advanced GUI- and network-

based applications, which work on both Windows and Linux. A rich set of

OS-independent development tools can be downloaded as a single bundle, including the

sophisticated RAD development environment, NetBeans, and JavaDoc, a simple means

for generating well-organized documentation from code comments.

The simplified UML class diagram of our object-oriented model of the H.264 de-

coder is shown in Fig. 2. It comprises about 60 classes, which represent data and sub-

processes related to decoding. They have been designed in such a way that it is easy to

identify objects and methods with hardware modules, registers, or state changes. For

most of classes, it is possible to strictly determine the number of instances. Knowing the

latter allows objects to be preallocated as static fields and to exist continuously during

program execution. This significantly reduces computational load related to memory

management and garbage collection. It seems that using this technique is crucial for

developing a Java-based H.264 decoder that works in real time. Another conclusion,

which does not directly result from the standard document, is that most of operations

can be performed without explicit integer multiplications. The latter can widely be re-

placed with binary shifts, possibly supplemented with additions. As to data types,

16 bits (including sign) seem sufficient to store variables related to decoding, but in

some cases, auxiliary results need 32 bits. Internal variables of decoding pipelines do

not occupy much memory. Quantization tables and sample buffers for transform and

prediction purposes take up the most space yet it seems possible to incorporate them

into a chip. The main problem is in storing reference frames for inter-prediction, which

requires large out-of-chip memory. Some of known decoders require encoders to limit

the number of reference frames depending on both video resolution and accessible

storage space, and we will probably employ this approach in our chip.

Even though the software decoder is currently developed only in order to help en-

gineers with implementing a hardware analogue, it can become a stand-alone project.

Our results suggest that for low resolution videos, real-time performance can be

achieved on current PCs even without rewriting the code in the C language.

Using FPGA and Java in rapid prototyping of a real-time H.264/AVC decoder

47

IndexScanner4x4BlockPlanePrediction

Plane

DecodedReferencePictureMarking

SequenceParameterSetExtension

ReferencePictureListReordering

Slice

MacroblockTypeCoreInter

IndexScannerInterReference

IndexScanner4x4BlockPlane

ResidualColourTransform

IndexScannerMacroblock

Macroblock

MacroblockTypeCoreIntra

IndexScannerBlockPlane

PictureParameterQueue

PredictionWeightTable

IntraPredictor

MacroblockStructure

InterPredictionMode

IndexScannerInterAux

MacroblockQueue

BlockStructure

InterPredictor

IntraPredictionMode

PictureParameters

MacroblockReport

PartitionStructure

ParsingException

MacroblockType

PartionCovering

PlaneConstructor

PartitionCovering

SequenceQueue

Neighbourhood

IndexScanMode

VUIParameters

AccessMode

Scaler

Predictor

...

AccessMode

Prediction

IndexScanner

ResidualBlock

ScalingList Neighbour

ScalingMode

MotionData

Interpolator

SliceQueue

Structure

Sequence

SliceType

Partition

NALType

Transform

InterFilter

Function

InitMode

Reporter

Picture

Parser

Mode

VLC

Filter Mode NAL Type

Fig. 2. Simplified UML class diagram of the Java-based H.264 decoder

Rys. 2. Uproszczony diagram UML klas dekodera H.264 zaimplementowanego w Javie

4. DIAGNOSTIC TOOLS

The software decoder is the foundation of our platform-independent diagnostic

tool. Being written in Java, the program works in any operating system equipped with

the JVM, especially on Linux. It allows for interactively testing the decoder against

errors and for preparing data for functional verification of digital modules. This is pos-

sible via two main functionalities, which are GUI-controlled using the windows of Fig.

3. Firstly, H.264 bitstreams can be analyzed and restructured, in order to identify and

extract input data that cause the decoder to fail. Secondly, the correctness of the decod-

ing of a single frame can be examined both visually and by following the dataflow step

by step. The latter is based on a quite advanced reporting mechanism, which collects

data in a synthetic form, so that they can be both displayed on screen and exported to

verification tools. The mechanism has been designed in a way that allows it to be easily

incorporated into the decoder, without refactoring and messing up the essential code.

Similar commercial tools are accessible, e.g. H264Visa [2], but they are quite ex-

pensive, work only on Windows, and it is impossible to customize them as desired.

Especially, access to the internals of the decoding pipeline is limited, and the data in-

spected via GUI cannot be efficiently translated to a form suitable for verification. Both

drawbacks are addressed in our application. Also, filters are to be developed that allow

interesting information to be quickly extracted. Another functionality under develop-

ment is automatic detection and extraction of erroneously decoded frames of long bit-

M. Parfieniuk, A. Petrovsky, A. Stankevich, M. Kachinsky, A. Petrovsky 48

streams. Nevertheless, in most cases, interactive testing the program supports is suffi-

cient.

Side-effects of our work are several applications that demonstrate H.264 decoding

subalgorithms. For example, Fig. 4 shows the main window of our tool that allows

users to interactively study different modes of accessing image samples.

(a)

(b)

(c)

Fig. 3. Diagnostic tool: (a) stream analysis window and frame analysis window for

(b) intra- and (c) inter-coding

Rys. 3. Narz dzie diagnostyczne: (a) okno analizy strumienia i okno analizy klatki

kodowanej w trybie (b) „intra” i (c) „inter”

Using FPGA and Java in rapid prototyping of a real-time H.264/AVC decoder

49

Fig. 4. Tool for demonstrating PAFF and MBAFF modes of image sample access

Rys. 4. Narz dzie do demonstracji trybów PAFF i MBAFF dost pu do próbek obrazu

Host Processor

(Plasma CPU)

USB

Controller

Input

bitstream

USB

2.0

System

bus

Adder

Curent

frame

memory

Main

memory

Reference

frame

memory

Video

out

F

I

F

O

Ctrl Unit

Intra

predictor

F

I

F

O

Ctrl Unit

Inter

predictor

F

I

F

O

Ctrl Unit

VLC

decoder

F

I

F

O

Ctrl Unit

Inv.

Transform

&

Dequant.

Display

interface

Ctrl Unit

F

I

F

O

Ctrl Unit

Deblocking

filter

F

I

F

O

Syntax

parser

Ctrl Unit

Fig. 5. Hardware decoder architecture

Rys. 5. Architektura dekodera sprz towego

M. Parfieniuk, A. Petrovsky, A. Stankevich, M. Kachinsky, A. Petrovsky 50

5. DECODER ARCHITECTURE

Based on the software, we have designed the hardware architecture of Fig. 5. One

its part is a host CPU with a USB controller and general-purpose memory. The second

one is a H.264 decoding pipeline with dedicated memory for video frames. Except the

memories, all circuits have been implemented on a single FPGA chip. After reaching

a mature state, the design is expected to be translated to the ASIC technology.

The Virtex-4 ML 401 Evaluation Platform was used in our experiments. It is pow-

ered by the Xilinx XC4VLX25 FPGA device and equipped with industry-standard

peripherals, interfaces, and connectors like DB15 VGA and USB. The main clock

source is a 100 MHz oscillator. The memory resources comprise 64 MB DDR SDRAM,

1 MB ZBT SRAM, 32 MB Compact Flash, 8 MB Flash, 4 kb IIC EEPROM, and 32 Mb

Platform Flash. They are connected to the FPGA chip via 32-bit data buses. The main

DDR SDRAM runs up to 266 MHz data rate.

Such a configuration is expected to be able to decode videos of resolutions from

320 × 240 to 720 × 576 at the rate of 30 frames per second. Both Baseline and Main

H.264 profiles have to be supported.

The decoder has been made programmatically reconfigurable. Most of its modules

have microprogrammable control units. The host processor is responsible for loading

up-to-date microprograms before starting a decoding job. In our architecture, decoding

modules are cascaded so that they form a pipeline, in addition to being connected to the

system bus. The latter is used only to initialize and roughly control block states. Data

related to decoding are passed from module to module via dedicated FIFO-buffered

connections between them, which are also responsible for interblock synchronization.

This is expected to greatly improve concurrency. Firstly, it helps with avoiding bottle-

necks caused by sharing one bus by many devices. Secondly, a connection can be made

wide enough to pass an entire 4 × 4 or 8 × 8 block of samples at once, which allows

them to be processed in parallel. This is especially the case of transform and prediction.

The current prototype has only one pipeline which is switched between luminance and

chrominance processing. A future approach we consider is to have three separate pipe-

lines, which allows decoding to be totally parallelized but requires a lot of FPGA re-

sources.

6. PLASMA-NTLAB PROCESSOR

The host processor we use is a customized version of the Plasma CPU [14]. The

latter is a simple RISC processor accessible as a VHDL project (about 4000 lines of

source code + documentation), and thus can be customized and used as a part of ad-

vanced SOPC solutions. Moreover, it is free for commercial use, even though its fea-

tures are sufficient for a wide range of applications, especially for DSP-related ones.

Fig. 6 shows the block diagram of the processor. The 32-bit address bus allows the

core to handle large memory. Excessive accesses to the latter can be avoided by wise

use of 32 32-bit general-purpose registers. Two additional special-purpose registers for

storing the results of both integer multiplication and division allow the ALU to fully

support fixed-point arithmetic. At the VHDL level, it is possible to select between big-

and little-endian byte-ordering. A number of peripherals are also accessible: UART,

Using FPGA and Java in rapid prototyping of a real-time H.264/AVC decoder

51

Interrupt Controller, Interrupt Timer, SRAM Controller, Flash Controller, DDR

SDRAM Controller, and Ethernet MAC. The instruction set is compatible with the

MIPS I architecture, e.g. with the MIPS R2000 CPU. From another point of view, it is

equivalent to the user-mode subset of the MIPS32 instructions, except nonaligned data

access and exceptions. The two-stage command pipeline can be extended to three

stages.

The Plasma core is not very resource consuming. If Xilinx Spartan-3 XC3S1000 is

the target platform, it takes up 1604 slices (20% of chip area) and can operate at the

maximum clock of 32–33 MHz. For Xilinx Virtex-4 XC4VLX25, it takes up 1588

slices (14% chip area), whereas the maximum clock is 64–67 MHz.

The original Plasma has been customized in order to match the memory organiza-

tion and I/O interfaces the development board provides. Especially, a USB controller

has been added, which allows for communication between the system and a PC work-

station. The testing environment runs on the latter, which allows for sending a video

stream to the prototype decoder and for verifying the output. This required the system

to be extended in such a way that the CPU can control and monitor stages of the decod-

ing pipeline. The resulting microprocessor architecture has been called the Plasma-

NTLab CPU.

PC_next Mem_ctrl

Control

o
p
c
o
d
e

m
e
m

_
s
o
u
rc

e

im
m

_
o
u
t

a
_

s
o
u
rc

e

b
_

s
o
u
rc

e

c
_

s
o
u
rc

e

b
ra

n
c
h
_

fu
n
c

Bus_muxReg_bank

pc_source

rs_index

rt_index

rd_index

PC

reg_source

reg_target

reg_dest

d_write

Shifter

ALU

Multiplication

Unit

address

d_read

c_bus

b_bus

a_bus

mult_func

alu_func

shift_func

a
d
d
re

s
s

a
d
d
re

s
s
_
n
e
x
t

b
y
te

_
w

e

b
y
te

_
w

e
_

n
e
x
t

d
a
ta

_
r

d
a
ta

_
w

System bus

Fig. 6. The block diagram of the Plasma microprocessor

Rys. 6. Diagram blokowy mikroprocesora Plasma

M. Parfieniuk, A. Petrovsky, A. Stankevich, M. Kachinsky, A. Petrovsky 52

7. FPGA DESIGN OF DECODING MODULES

For those parts of the software decoder for which code had been frozen after thor-

ough tests, the corresponding digital circuits have been developed in FPGA. These are

the NALU (Network Abstraction Layer Unit) detector, bitstream parser, including the

VLC (Variable Length Coding) decoder, and residual transform unit. Their schemes are

shown in Figs. 7, 8, and 9, respectively.

The first module is responsible for determining NALU boundaries in a input bit-

stream and for extracting the contents units carry. The contents form a higher-level

bitstream, which is analyzed by the parameter parser in order to decode syntax ele-

ments. The related operations require only iterating binary shifts and comparisons,

which seems simple, but takes many cycles of a general-purpose CPU. In order to re-

lieve the latter, only a fraction of the FPGA chip area needs to be sacrificed. Namely,

the NALU detector of Fig. 7 uses only 70 of 21504 Slice Flip-Flops and 174 of 21504

LUTs that XC4VLX25 contains.

A much more complex part of the decoder is the transform unit of Fig. 9, which

computes approximations of 2-dimensional DCTs. It needs quite large memory buffers

for storing two 16 × 16 arrays of integers: one of input data and one of auxiliary/output

values. The 4 × 4 version of our transform unit can be compared with that of [5], where

detailed information of a H.264 implementation in FPGA is given. Two variants of the

circuit are considered therein, which we have also realized in our architecture. In the

first, calculations on vectors are performed element by element, in order to conserve

chip area. In the second, an entire inner product of 4-element vectors is computed at

once, which requires replicated arithmetic blocks to work in parallel. The synthesis

results of Tables 1 and 2 show that our preliminary designs are comparable to those by

others, or even slightly better in terms of chip area utilization. This proves that our

software prototype well accomplishes its task. It allows hardware engineers to quickly un-

derstand what is expected and to construct digital circuits of good quality, i.e. high perform-

ance is achieved at low resource utilization. The inter- and intra-prediction units are under

development. Finishing them will allow a first version of the decoder to be assembled.

Ctrl UnitRg 0Rg 1 Load

32

32

32

Shifter

Data_en

Detector

start_code_prefix

Rg

32

32

Next_NALU

Fig. 7. NALU detector

Rys. 7. Detektor jednostek NALU w wej ciowym strumieniu binarnym

Using FPGA and Java in rapid prototyping of a real-time H.264/AVC decoder

53

32

FIFO

Rg 0Rg 1

Left-Shifter

31

Ctrl Unit

Load

32

Request

Ready

Accumulator

Carry

Prefix

Length

Detector

16 high-order
Fixed

length

Right-Shifter 32 - k

k

32

u(v)16 low-order

code - 1

codeNum

ue(v)

Parameter

Registers

se(v)-related

computations
VLC table

se(v)

me(v)

32

te(v)-related

computation

te(v)

Intra

Inter

Intra

Inter

5

Fig. 8. Parser unit

Rys. 8. Parser

Fig. 9. Transform unit

Rys. 9. Modu transformacji rezyduum

M. Parfieniuk, A. Petrovsky, A. Stankevich, M. Kachinsky, A. Petrovsky 54

 Table 1. Evaluation of single-stage residual transform

 Tabela 1. Ocena jednostopniowej implementacji transformacji rezyduum

Parameter Authors’ realization [5]

FPGA chip XC4VLX25-12 XC2VP7

Wordlength 16 16

Slice Flip-Flop 37 65

LUT 111 *

Slice 93 103

Max. clock [MHz] 200 150

 Table 2. Evaluation of parallel residual transform

 Tabela 2. Ocena równoleg ej implementacji transformacji rezyduum

Parameter Authors’ realization [5]

FPGA chip XC4VLX25-12 XC2VP7

Wordlength 16 16

Slice Flip-Flop - 257

LUT 1008 *

Slice 512 644

Max. critical delay [ns] 9.7 9.3

8. CONCLUSION

Using Java routines as a basis for FPGA development turns out to be a good method-

ology for implementing such an advanced DSP algorithm as the H.264 decoder. Clear and

well-documented code has allowed hardware specialists both to design a flexible modular-

ized architecture of the real-time system and to rapidly prototype digital circuits that speed

up decoding subtasks. The advantage of high productivity is accompanied by good quality

of FPGA designs, which can compete with the solutions by others, in terms of throughput

and resource utilization. Additionally, without the necessity of looking for other tools, the

Java platform has allowed us to develop in parallel a multi-platform GUI-based diagnostic

application for test and verification purposes. On the other hand, the simple Plasma RISC

core, which is publicly available as a VHDL source code, has served as a foundation for

developing a customized host processor for controlling the hardware decoding pipeline.

BIBLIOGRAPHY

[1] A. Borowicz, M. Parfieniuk, A. Petrovsky, 2006: An application of the warped

discrete Fourier transform in the perceptual speech enhancement. Speech Comm.,

vol. 48, pp. 1024-1036.

[2] H264Visa (online). Available: http://www.h264visa.com

[3] ITU-T and ISO/IEC, 2003: ITU-T Rec. H.264 Advanced video coding for generic

audiovisual services / ISO/IEC 14496-10 MPEG-4 AVC. Geneva (online).

Available: http://www.itu.int/rec/T-REC-H.264/

[4] ITU-T and ISO/IEC, 2001: ITU-T Rec. H.264.2 Reference software for H.264

advanced video coding / ISO/IEC 14496-5 MPEG-4 Reference software. Geneva.

Using FPGA and Java in rapid prototyping of a real-time H.264/AVC decoder

55

[5] R. Kordasiewicz, S. Shirani, 2006: On hardware implementations of DCT and

quantization blocks for H.264/AVC. J. VLSI Signal Process., vol. 47, pp. 189-199.

[6] D. Marpe, T. Wiegand, G. J. Sullivan, 2006: The H.264/MPEG4 Advanced Video

Coding standard and its applications. IEEE Commun. Mag., pp. 134-143.

[7] C.S. Kannangara, 2006: Complexity management of H.264/AVC video compres-

sion. PhD Thesis, The Robert Gordon University.

[8] S.-k. Kwon, A. Tamhankar, K.R. Rao, 2006: Overview of H.264/MPEG-4 part 10.

J. Vis. Commun. Image R., vol. 17, pp. 186-216.

[9] J. Labrosse et al., 2008: Embedded software: know it all. Newnes, Oxford.

[10] C.D. Locke, P.C. Dibble, 2003: Java technology comes to real-time applications.

Proc. IEEE, vol. 91, no. 7, pp. 1105-1113.

[11] M. Livshitz, M. Parfieniuk, A. Petrovsky, 2005: Wideband CELP coder with mul-

tiband excitation and multilevel vector quantization based on reconfigurable code-

book, Digital Signal Process. no. 2, pp. 20-35, Moscow, Russia (in Russian).

[12] Mailing list for x246 developers (online). Available: http://mailman.video-

lan.org/listinfo/x264-devel

[13] Mp4-tech mailing list (online). Available: http://lists.mpegif.org/mailman/list-info/

mp4-tech

[14] Plasma CPU (online). Available: http://www.opencores.org/projects/mips

[15] E. G. Richardson, 2003: H.264 and MPEG-4 Video Compression. Wiley, New York.

[16] The FFmpeg libavcodec library (online). Available: http://ffmpeg.org

[17] The H.264/AVC reference software (JM) (online). Available: http://ipho-

me.hhi.de/suehring/tml/

[18] H. Schwarz, D. Marpe, T. Wiegand, 2007: Overview of the scalable video coding

extension of H.264/AVC. IEEE Trans. Circuits Syst. Video Technol., vol. 17, no. 9,

pp. 1103-1120.

[19] T. Wiegand et al., 2003: Overview of the H.264/AVC video coding standard.

IEEE Trans. Circuits Syst. Video Technol, vol. 13, no. 7, pp. 560-576.

This work was supported by Bialystok Technical University under the grants

W/WI/8/2008 and W/WI/6/2009.

U YCIE FPGA I JAVA DO SZYBKIEGO PROTOTYPOWANIA

DEKODERA H.264/AVC

DZIA AJ CEGO W CZASIE RZECZYWISTYM

Streszczenie

 W pracy przedstawiono raport z próby implementacji dzia aj cego w czasie rzeczywistym

sprz towego dekodera wideo standardu H.264. Zaprezentowano wst pne wyniki projektu: j dro

RISC i wybrane modu y cyfrowe zaimplementowane z u yciem Xilinx FPGA. J dro ma s u y jako

nadrz dny procesor steruj cy pozosta ymi obwodami dekodera, które przy pieszaj podstawowe

etapy dekodowania. System jest projektowany i testowany w oparciu o dekoder programowy i na-

rz dzia diagnostyczne, które s implementowane obiektowo w Javie. Uzyskane rezultaty pozwalaj

autorom rekomendowa po czenie FPGA i Java jako dobr podstaw do szybkiego prototypowania

zaawansowanych algorytmów DSP.

S owa kluczowe: dekoder H.264, Plasma RISC, Xilinx FPGA, Java

