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Abstract

In natural vision, the information in the natural environment tends to
be acquired with minimum redundancy for subsequent handling akin to the
technical problems and solutions encountered during the direct or indirect
acquisition of compressed or decorrelated (whitened) multidimensional data,
their transmission and processing. Considerable challenges are faced when
the restrictions of Gaussianity in the signal and noise distributions, and lin-
earity in processing are lifted. We improve recent results in vision research
on the concept of higher order whitening of higher order statistics (HOS)
based data. This is achieved by modifying the design of the filter and its
inverse so that the processed image is of better quality than what is possible
by direct implementation of a related scheme. Besides the modified higher
order whitener and its complete analysis, the restriction of rotational sym-
metry in the power spectrum is eliminated in the two-dimensional derivation.

Keywords: whitening, higher-order whitening, power law for images.

1 Motivation

Whitening, in the traditional sense as originally used in filtering, prediction and
smoothing of stationary random processes, orthogonalizes the data samples. In
communications, such orthogonalization allows the detection algorithm to oper-
ate on each output sample independently. In |1], SNR maximization is the main
scheme for improving the bit, error probability. The difference between the receiver
proposed there and conventional ones lies in the presence of a noise-whitening filter.
A whitening filter prior to demodulation and smoothing improves the amplitude
estimate. The concept of whitening is also widely used in models for signal pro-
cessing tasks in the retina [2]| to achieve a redundancy-reduced representation of
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the original input signal. This reduction of second-order correlation is desirable
for subsequent processing. The increasing thrust towards higher order statistics
(HOS) based signal, data, and information processing embracing non-Gaussianity,
non-stationarity and non-linear processing, necessitates removal of redundancies
by higher order whitening,.

The statistics of the noise affecting real channels significantly deviate from
those corresponding to the Gaussian model. Non-Gaussian disturbances are com-
monly encountered in indoor environments, such as offices, hospitals, and factories
as well as in underwater communications applications. If the disturbance is Gaus-
sian and the fading amplitude is Rayleigh-distributed, then the structure of the
optimum receiver is a bank of estimator-correlators, possibly preceded by a lin-
ear, whitening filter for handling the noise correlation. Receivers designed under
the Gaussian noise assumption exhibit dramatic performance degradations in the
presence of non-Gaussian impulsive noise. Therefore, attention has been directed
(see |3] and [4]) toward the development of non-Gaussian noise models and the
design of optimized detection structures that are able to operate in such hostile
environments. Buzzi, Conti and Lops |5] modeled the noise as the product of
two independent processes, namely, a complex-valued Gaussian process and a real
nonnegative one, to account for the fluctuations of the noise source. The noise
correlation was accounted for by a whitening linear filter, as for the case of Gaus-
sian noise. Their structure consists of two parallel blocks, namely, an estimator of
the short-term PSD plus a bank of estimators correlators, keyed to the estimated
PSD of the disturbance. In the non-white noise case, the spectral shape of the
noise needs to be estimated and “divided out” of the spectrum. That is, a “pre-
whitening filter” needs to be constructed and applied to the data so that the noise
is whitened. Then the previous case can be applied.

2 Introduction to Second and Higher Order
Whitening

Whitening, basically, decorrelates a signal or image by removing statistical redun-
dancies exhibited in the second order statistics of, say, a zero-mean wide-sense
stationary random process. A natural image or a sequence of images has consider-
able spatial as well as temporal (in the case of image sequences) correlation whose
removal calls for whitening by linear filtering. In a non-stationary image, higher
order correlations that remain require nonlinear methods for their removal based
on procedures, referred to as higher order whitening, applied to statistical image
models. Crucial in such modeling is the notion of scale-invariance, which refers
to an image description that remains fixed with change of image-scale. Scale-
invariance is a form of self-similarity, stochastically, a property manifested in a
fractal, approximated by objects ubiquitous in nature, like coastlines, clouds, and
snow flakes, among many other occurrences in nature.

Wide-sense stationary (WSS) assumption is basic to Wiener filtering and smooth-
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ing theory while the popularity of the Gaussian distribution is due to various nice
properties it embodies. Images and sequences of images may neither be stationary
nor Gaussian and may exhibit highly non-Gaussian statistical behavior. Whiten-
ing of Gaussian signals is possible with principal component analysis (PCA) and,
in this case, decorrelation is equivalent to statistical independence. Subsequently,
independent component analysis (ICA) was developed for handling non-Gaussian
sources especially in the problem of blind source separation. ICA methods, how-
ever, do not yield statistically independent outputs in case of model inaccuracy
and the assumption on the model is also confined, for the most part, to a linear
mixture of independent sources whose number also has to be estimated |6].

In the case of a non-Gaussian source vector, when decorrelation does not, imply
statistical independence, ICA separates a signal (with not. more than one Gaussian
component) into additive subcomponents subject to the assumption of mutual
statistical independence of the non-Gaussian source signals. Most ICA methods
are not able to extract the actual number (or order) of source signals, nor the signs
or the scales of the sources. Furthermore, ICA is restricted to source vectors y =
Px, where P is a rectangular matrix multiplying the vector x whose components
are assumed to be statistically independent. A decomposition applicable to any
matrix, square or rectangular, is the singular value decomposition (SVD),

P=USVT,

where U and V' are orthogonal matrices and S is the diagonal matrix of singular
values. In the case when the singular values are all positive (in general, they are
nonnegative) and S is square, S~/? exists and S~Y/2U7 is a whitening transfor-
mation (like in PCA) and V is found by minimizing the negentropy.

Typical algorithms for ICA use centering, whitening and dimensionality re-
duction as preprocessing steps in order to simplify and reduce the complexity of
the problem for the actual iterative algorithm. Whitening ensures that all di-
mensions are treated equally a priori before the algorithm is run. Algorithms for
ICA include infomax, FastICA and JADE, but there are many others also. In
[7] the SWM (support width measure) contrast is used to solve the ICA problem
involving correlated images.This approach is motivated by the unsatisfying results
of JADE and FastICA for the same problem, when no other preprocessing than
whitening like filtering is used. Its main advantages are its theoretical contrast
convexity for bounded sources, its geometrical interpretation and its simplicity.
The Probabilistic Independent Component Analysis model is aimed at solving the
problem of overfitting in classical ICA. Support vector machines (SVMs) are a set
of related supervised learning methods used for classification and regression. They
belong to a family of generalized linear classifiers. They can also be considered
a special case of Tikhonov regularization. A special property of SVMs is that
they simultaneously minimize the empirical classification error and maximize the
geometric margin; hence they are also known as maximum margin classifiers.
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3 Power Law and Statistical Modeling of Image
Databases

Knowledge of the statistical properties of natural images is important in many
diverse fields of research. For example, physiologists can test their theories of
evolutionary optimization of vision against the measured properties of the envi-
ronment. At the other end, computer scientists can use the measured statistics
to create convincing synthetic environments for the film industry. The class of
natural images is receiving attention in image databases used for vision modeling
research. These images are sufficiently homogeneous so that a statistical represen-
tation model may be constructed for use in compression, denoising, deblurring and
also, in the future, for superresolution. Representations using Fourier bases, Gabor
bases, wavelet bases and their various ramifications have been extensively used.
However, instead of fixed bases, serious attention is needed for generating data
driven bases for manipulation and transformation of the data for various tasks
(like cognition in the human sensory system). Relatively meagre attention has
been directed to research with this type of massive volumetric data. At present,
such research thrust is highly computer software (and hardware) driven but more
coupling with analytical machineries is needed.

3.1 1-D Analysis

Balboa et al |8] derived results for the power spectra in 1-D by assuming a cut
to consist of M independent regions of constant intensity such that the intensity
profile of the j-th region is:

I;, z€[zj 1]
Li(z)=4q 7 g2
i(@) { 0, otherwise.
Here, the fj’s are positive constants and the z;’s are chosen suitably to divide the
cut into constant intensity regions. The 1-D cut /{z) can now be represented as

M

I(2) = 3" (),
i=1

whose Fourier transform is

.M
where w = 27 f and f is the spatial frequency. The power spectrum of /{x) is

2

M
@) = 25|32 [e st — o)
=1

The observation made in [8] is that as spatial frequency increases, the summation
term in the last equation varies but the envelope falls as 1/w®. Further, at very
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low spatial frequencies corresponding to w < 1/(xyy1 — xy), where (a1 — ;)
is maximum at j = J, a Taylor series expansion (around = = z;) leads to the

approximation
@

M

FroN2 i —jwz;
@) |3 L@ —wg)(e77%)
d=1
which reveals that the envelope is approximately constant at very low frequencies.

3.2 2-D Analysis

The reasoning presented above is generalized to a 2-D image [(z,y). Again, the
image is treated as continuous rather than as a set of discrete pixels. The 2-D
Fourier transform of I{x,y) is

Honw) = [ [ Hwpeire i ay

where w, and w, are the bivariate independent angular frequency components.
Actually, the integrand is non-zero only over the finite support of the image in 2-D
space.

The Fourier transform along the w,-axis at w, = 0 is

I{w,,0) = / (/ Iz, y}e_j"”"xd:z:) dy.
—oo —oo

The integral within parentheses is evaluated for an arbitrary but fixed y for equiv-
alence to a 1-D cut analysis. Now let [{z,y) = Z;‘i (f') I;(x,y), where
ooy | T®), €l zin]
Ij(z,y) = { 0,  otherwise.

Note that I;(y) is a constant for the specified range of z at a particular value of
y. It however may vary with y and this dependence on y is expressed as I}(y}.
Also, the number of constant-intensity regions varies with y and this explains the
dependence of M on y in the summation. Proceeding parallel to the 1-D case
discussed above leads to the modified results

. o Mly)
[wn0) = == [ 37 Ly)e 7o —e )y, (1)
€T —0 le
| oo M) ?
Hen0 = 5| [ Y G e @)
B

The ;41 and 2; implicitly correspond to (#;. 1, y) and (x5, y), respectively. Clearly,
the envelope of the power spectrum falls as 1/w,? even though the integral term
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may fluctuate. A similar analysis for the case w, = 0 leads to the result that the
power spectrum falls as 1/w,”.

The more general case of 2-D Fourier transform is now considered. Extending
the idea of constant-intensity regions to two dimensions, the image is divided into
rectangular patches, each having pixels of the same intensity values. The image is
divided into M N rectangles using M + 1 vertical lines z = z;, 7 =1,2,... . M +1,
and N + 1 horizontal lines y = yi, k = 1,2, ..., N + 1. The rectangle bounded by
the four lines © = xj, * = x;41, y = yr and y = yr41 is assumed to have constant
intensity f‘j:k.

3.3 Division of the image into rectangular patches

L S kL T T

Y1

¥z
¥

Y

Figure 1: Figure showing the division of the original image into constant-intensity
rectangular patches. The shaded region shows one such rectangular patch.

The procedure to divide the image is as follows. Starting from the left vertical
boundary of the image (i.e., = z), the image is scanned from left to right to
check if each column is identical to the column immediately preceding it. The line
& = 29 is drawn between adjacent columns L; and L. where at least one pixel of
L differs from the corresponding pixel on the same row in the preceding column
L. Proceeding thus, all the vertical lines = = x5 to x = xps are located. Similarly,
starting with the upper horizontal image boundary (y = y1), the image is scanned
from top to bottom and each horizontal line y = yy. is located between rows where
at least one pixel differs from the corresponding pixel on the same column in the
preceding row. Figure 1 schematically shows the division of the original image.

Some observations regarding the image division are discussed next. This method
does not divide the image into the largest possible regions of constant intensity.
The particular method discussed above divides the image based on a uniform grid
which simplifies mathematical calculations, and it is likely that more than one
region may have identical intensity values. For a white noise image, the rectangles
will be of size 1 pixel, since the pixel intensity values are completely independent
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of other pixels. Balboa et al |8] derived the result for the 1-D case based on
the assumption that images consist of individual constant-intensity patches. This
assumption is not valid in the type of 2-D generalization considered here.

3.4 2-D Fourier analysis: general case
Let the intensity profile of the image be described by:

M

I(z,y) = ZZIJL ,y),

k=1 j=1

where :
L, z€lzj,xj1] and y € [yk, Y1)
L (zx. = FLE) J_s -+ . Hhky HE+
(@, 9) { 0, otherwise.

For a specified 2-tuple (4, %), Ljr(x,y) denotes a constant intensity rectangular
patch and I, is the value of this constant. Let, I;;(w,,w,) be the Fourier transform
of the patch Ii(x,y). Then, the Fourier transform of I(x,y) is given by:

N M
I(Wm:wy) - szjk(dtswy)
k=1j=1
N M Ye+1 Ti+1
= X [T [ e e s
k=1j=1
N M , Yei1
— ZZ / e_M"cd:r/ e vy dy
k=1 j=1 Yk
g MM

= ZZ;},\& JwaTiil _ gmIwaTs)(emIWy Ykt _ g~ dWuyk),
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Note that [ sk 1s a function of j and k and cannot be moved outside the summation
in the last equation. The power spectrum is

2

N M
|f(wx,wy) = ZZf e JPrTit1 _ o Jw:x‘?)(e Gy YRl _ g ?wyy;.)

wawy® k=1j=1

®3)
The term inside the summation on the RHS varies with j and &, but the envelope
of the power spectrum falls as 1/ (wx?wyg). At very low spatial frequencies, w, <
1/(xy+1 — 27), where (41 —=;) is maximum for j = J, and wy < 1/(yx+1 — YK ),
where (Y41 —yx) is maximum for k = K. Then, e 7«=%5+1 o e 99% — jo, (241 —
xj)e 9 and e IVt 0 e IOk — juw (ygp1 — yi)e I@vYE, by Taylor series
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expansion (around each 2-tuple (z = z; , y = yi)). So,

N M
. 2 1 = . sl
H(we,wy)|” = —5—5 DD Lin(—jwa) (@41 — z5)e 545 (—jwy ) (h1 — yn)e
EY k=1 4=1
N M ’
= 120D Lilwjen —x5)e 7™ (yryr — yr)e ows
k=151

This shows that at very low spatial frequencies, the envelope of the power spectrum
is approximately constant with frequency.

4 Observations

To summarize the results, the 2-D power spectra of images fall off as 1/(w,2w,?),
where w, and w, are the components in the wavenumber (angular frequency)
domain. Along the w,-axis, the spectra fall off as 1/w,?, and as 1 /w,? along the w,-
axis. At very low spatial frequencies, the envelope of the spectrum is approximately
constant. In [9], the authors provide justification for why the spectrum is flat at
very low frequencies.

4.1 Gradients of illumination

The case of gradients of illumination discussed in Balboa |8| for 1-D can be ex-
tended to 2-D. The simplest model for expressing gradients (variable-separable
case) is:
) o fjk +yzxy, x € [z, x541] and y € [yk, yr+1]
Liv(@,y) = { 0, otherwise

where v is a constant. Since [{x,y) = Z,Ll Z;il ;1 (, y), the Fourier transform
of I{x,y) is obtained as:

N M
I(wm{“’y) - E :E Ijk(warswy)a
k=1 j=1
where
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and Iy can be simplified using integration by parts as

3 =T i L =i
I =+~ _(3;,.___1‘.3 JWrTitl _ poe J“Jr%) + — (e Iw=Tit1 _ ¢ Jer«:)
J 7 2
Wa w2

i(yk+le_jwyyk+! _ ’ykf'._jwyyk) + iz(e_jwyyk+l _ 6—3‘@;,&;.-) )
wy w3

Thus, fjk(&-’_q;, wy) contains a term proportional to 1/ (wﬁwg) and the power spec-

trum given by |f(wx, wy)|? = | Z?zl Z:il fjk(wx, wy)|? is proportional to l/(wiw‘;),
which implies a steeper descent than 1 /(.uguuj) Thus, illumination gradients lead

to a steeper descent of the power spectrum in 2-D. Other models to describe the

effects of illumination are possible and only the simplest case has been dealt with

here.

4.2 Statistical independence

According to Ruderman [10], statistically independent regions have random size,
location and intensity. The segmentation performed by Ruderman is based on
dividing images into largest possible regions of constant intensity and the regions
are of various irregular shapes. Consequently, adjacent independent regions in the
image are unlikely to have correlation in pixel intensities. In contrast, the im-
age segmentation into rectangular patches explained in this report is based on a
uniform rectangular grid of lines. It is possible to have adjacent regions with the
same intensity since both regions may in fact belong to the same object. Hence,
the rectangular regions may not be statistically independent.

One more point to be noted is that since the power spectrum |f (wa, wy)|? is
proportional to 1/(w2w?), points in the wavenumber (angular frequency) domain
satisfying w,w, = ¢ where ¢ is some constant, show identical spectrum fall-off
behavior. These points lie on a rectangular hyperbola. In comparison, for the
rotation-averaged case, the power spectrum P(w) & 1/w? and w = w2+ wl
and the points showing identical fall-off behavior lie on a circle.

5 Higher Order Whitening and De-whitening Fil-
ters

This section discusses higher order whitening, in particular the filter described
by Gluckman [11]. A second-order whitening filter is first designed to remove
correlations between image pixel intensities, as specified by Olshausen [12]. It is
established that images have considerable regularity in their second order spatial
correlations as measured by the autocorrelation or power spectrum [13|. It has
been observed that the orientation-averaged power spectrum P(f) varies with
spatial angular frequency [ as:

P(f) x 1/f2 4)
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where [ = / f? + fg and the 2-D frequency response is defined in the (fy, f2)-
plane. So, it is logical to design a whitening filter whose magnitude of frequency
response varies as f so that the whitened image has a ‘flat’ power spectrum. A
crucial assumption in this procedure is that of circular symmetry of the inherently
2-D frequency response in the (f1, fo)-plane required for filtering 2-D image data.

After second order whitening, lines and edges, which correspond to higher order
correlations, are visible in the whitened image. These correlations can be removed
using higher order whitening. In the method discussed in [11], the (second order)
whitened image W (x) may be expressed as:

W(x) = g(x) * I(x), (3)

where x = (1, x2), I(x) is the original image and g(x) is the second order whiten-
ing filter unit impulse response with the property that the magnitude of its Fourier
transform, |g(f)|, is proportional to f. W{x) may assume both positive and neg-
ative values. The statistics of second order whitened images are unstable (in the
sense of large dynamic range) due to the high kurtosis of pixel intensities and so
Gluckman suggests usage of the log magnitude whitened image L(x) = log|W (x)|
for further whitening. He further conjectured, based only on simulations, that
L(x) also obeys a power law similar to that in Equation (4) and hence filtering
it with the second order whitening filter g produces higher order whitening. The
higher order whitened image H(x) is obtained as

H(x) = sgn(W(x)) exp{g(x) * log|W (x)|}. (6)

This equation characterizes a form of homomorphic filtering. The sgn term repre-
sents the signum function. H(x) in (6) assumes both positive and negative values
due to the presence of sgn(W(x)). Figure 2 shows the higher order whitening
scheme followed in [11].

Original Secand-order Wi} Filee with Higher ordar
image, l{xi—] hitening Lz =log|wix)] | Sl expl] —>uhitened image,
[power spectrum filter, gix) =lix)"g{x} B Hix)

follows power law)
[claimed to obe

¥
power law)  HOMOMORPHIC FILTERING

Figure 2: Schematic showing the steps in the higher-order whitening procedure
suggested by Gluckman.

A brief analysis of the above higher order filter equation follows. The original
image can be recovered from the higher order whitened image by a straightforward
inverting procedure described by Equation 10 in reference [11]. The identities
H(x) = |H(x)|sgn(H(x)) and sg'ﬁn(H(x))2 = 1 are easily seen to hold. Applying
the signum function to both sides of Eq. (6), one gets sgn(H(x)) = sgn(W(x)).
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For notational brevity, the explicit functional dependence on the variable x is
dropped. Multiplying both sides of Eq. (6) by sgn(H), one gets

Hsgn(H) = sgn(H)sgn(W) exp{g * log|W|}
= exp{g * log|W|}.

But the left hand side of the preceding equation is equal to |H|. So, denoting the
inverse of the whitening filter unit impulse response g by g, it follows that

W[ = eap{g™" *log|H|}
Le, W = sgn(W) exp{g !+ log|H|}.

Therefore, convolving both sides of Eq. (5) with ¢!, substituting the preceding

expression for W and noting that sgn(W) = sgn(H), it follows that
I(x) = g~ ' % [sgn(H) exp{g ™" + log|H|}]. (M)

Eq. (7) is identical to Eq. 10 in [11]. To get the modified filter proposed here,
drop the sgn term in Eq. (6) and then replace the higher order whitening filter H
by

Hy = exp{g x log|W|}. (®)
Noting that H; assumes only positive values (since exp{g+log|W|} > 0), it follows
that

g * log|W| = log(H1) = log|H1|.

Following arguments similar to the ones above and inserting the identity sgn(H;) =
1, the counterpart of Eq. (7) becomes

=g "+ [sgn(Hy) eaplg™" + log|Hyl}). ©

Equations (7) and (9) are equivalent except, that sgn(H;) =1 in Eq. (9) (because
in Eq. (8), H; > 0 always). It will be found later from simulations that this
replacement of H by H; improves the overall quality of the reconstructed images
after higher order whitening.

6 Simulation results

6.1 Second order whitening based on 2-D power law

Results of simulations to verify the 2-D power law proposed in Equation (3) are
presented in this section. A second order whitening filter G is designed in the
frequency domain such that:

. Waldy, Wy % 0 and Wy ?é 0
Glwy, wy) = wey, wy=0
Wy, we=0.

From Egs. (2) and (3), it can be seen that filtering an image with the above
whitening filter leads to an approximately flat spectrum over a significant range of
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frequencies. The image power spectrum shows that most of the energy is concen-
trated in the low spatial frequencies and the spectrum falls off with higher frequen-
cies. The power spectrum of the filter proposed above increases in magnitude with
spatial frequencies, resulting in a whitened image with amplified high-frequency
noise. To avoid this problem, the whitening filter may be combined with a 2-D
lowpass filter and then applied to images. The modified whitening filter, based on
a filter proposed by Liao et al in |14], is given by:

n
VWi +w?
PR B

where £, w. and n are parameters which can be suitably varied to achieve a flat
spectrum (& = 1 in [14]). The exponential term acts as a lowpass filter, and the
cut-off frequency is determined by w..

For the set. of images considered, the parameter value w. = 0.05N, where the
input image size is N x N. By suitably choosing the parameters £ and n in
Equation (10), flat spectra over larger range of frequencies can be obtained. The
whitening was performed on different sets of images: natural, mixed and thermal.
The natural and mixed scenery visible images have been sourced from the van
Hateren database |15], while the thermal images have been sourced from Morris
et al |16].

The whitened image obtained in each case reveals that most of the correlations
between pixels in the image have been removed. As a means of comparison, the
rotation-averaged 1-D power spectra are plotted. Some of the image spectra have
distinct streaks along the w, and w, axes. These streaks may not be sufficiently
flattened in the process of whitening. Schaaf and Hateren [17] suggest that one
reason for the appearance of such streaks could be that, on average, there are more
horizontally and vertically oriented structures in natural images. Langer [18] ex-
plains why scaling may fail in individual images, and how the appearance of the
streaks is determined by the shape and size of the image window.

The whitening filter is separable and is easily invertible. Accordingly, a 2-D
de-whitening filter G~ !(w,, w, ) is designed in the frequency domain as follows:

) 1/ (wawy), we #0and wy #0
G'_l(“’wswa =< 1/w,, wy =0 (11)

1/wy, wy = 0.

The modified whitening filter in Eq. (10) has an exponential term which also can

be incorporated into the de-whitening filter as:
v n
NN
R : (12)

We

(?l_l(w:c:wy) . é_l(wz,wy)exp k
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6.1.1 Natural image - second order whitening and de-whitening using
2-D filter

(a) Original image.

10 | = Origial image
= = =Second order whitened image
< Second order reconstructed image

P 10" 107

Log fequency [, = sartial+a))

(¢c) Reconstructed image using 2-D de- (d) Rotation-averaged power spectra.
whitening filter.

— Original image
= = = Second order whitened image

* 10" 10°

(e) Whitened image - Gluckman’s filter. (f) Rotation-averaged power spectra - Gluck-
man.

Figure 3: Natural image - second order whitening and de-whitening., 2-D filter
parameter values used: k& = 0.3, = 1.2, The 2-D filter used in (b) decorrelates
the image better than Gluckman’s filter in (e).
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6.1.2 Mixed scenery visible image - second order whitening and de-
whitening using 2-D filter

(a) Original image. (b) Whitened image using 2-D filter.

I——- ——— --—q 10

10" | ——Criginal image
= = =Second order whitened image
Second order reconstrocted image
10’ w0’ 10
Log Fequency (@, = scrhcqf'm:n
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(¢c) Reconstructed image using 2-D de- (d) Rotation-averaged power spectra.
whitening filter.

’
—— Original image

= = = Second order whitened image

o

10f 10 107 10"

(e) Whitened image - Gluckman’s filter. (f) Rotation-averaged power spectra - Gluck-
man.

Figure 4: Mixed scenery image - second order whitening and de-whitening. 2-
D filter parameter values used: £ = 0.4, = 0.9. The 2-D filter used in (b)
decorrelates the image better than Gluckman’s filter in (e).
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6.1.3 Textured visible image - second order whitening and de-whitening
using 2-D filter

(a) Original image. (b) Whitened image using 2-D filter.
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(c) Reconstructed image using 2-D de- (d) Rotation-averaged power spectra.

whitening filter.

—— Original image
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(e) Whitened image - Gluckman’s filter. (f) Rotation-averaged power spectra - Gluck-
man.

Figure 5: Mixed scenery image (highly-textured) - second order whitening and
de-whitening. 2-D filter parameter values used: k = 0.3,17 = 1.2, The 2-D filter
used in (b) decorrelates the image better than Gluckman’s filter in (e).
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6.1.4 Thermal image - second order whitening and de-whitening using
2-D filter

(a) Original image. (b) Whitened image using 2-D filter.
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(e) Whitened image - Gluckman’s filter. (f) Rotation-averaged power spectra - Gluck-
mar.

Figure 6: Thermal image - second order whitening and de-whitening. 2-D filter
parameter values used: & = 0.1, = 1.0. The 2-D filter used in (b) decorrelates
the image better than Gluckman’s filter in (e).
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Simulation results from a variety of test image data - natural, mixed scenery,
textured, thermal - show that a satisfactory reconstruction of the original image
can be obtained by filtering with G~' from Eq. (11) itself. This obviates the need
for the additional three parameters k,n and w. at the de-whitening side. Exact
reconstruction is achieved by using the de-whitening filter specified in Eq. (12).

6.2 Higher order whitening

Higher order whitening is performed on a sample thermal image sourced from Mor-
ris et al [16]. The procedure followed is described in Equations (5) and (6). The
second order and higher order whitened images are displayed. The reconstructed
original image is shown for the two cases: with the signum function in the higher
order filter as proposed by Gluckman, and without the signum function as pro-
posed in this paper. Results are shown in Figures 7-9.

Next, the higher order whitening and de-whitening using Gluckman’s procedure
is repeated using the 2-D whitening filter proposed in this paper. The higher
order whitened image and the log power spectra are shown in Figures 10 and 11,
respectively.

6.2.1 Thermal image - higher order whitening and de-whitening using
Gluckman’s procedure

(a) (b)

Figure 7: (a) Original thermal image, (b) Second order whitened image using
Gluckman’s orientation-averaged whitening procedure.



38 Nirmal K. Bose, Umamahesh Srinivas, R. Lee Culver

(a) (b)

Figure 8: (a) Higher order whitened image using Gluckman’s higher order whiten-
ing procedure, (b) Reconstructed original image (sighum term used in higher order
whitening, as proposed by Gluckman).

Figure 9: (a) Higher order whitened image using Gluckman’s higher order whiten-
ing procedure, (b) Reconstructed original image (signum term not used in higher
order whitening, as proposed in this paper).
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6.2.2 Thermal image - higher order whitening and de-whitening com-
bining 2-D filter and Gluckman’s procedure

(a) (b)

Figure 10: (a) Original thermal image, (b) Higher order whitened image (decorre-
lated) using Gluckman’s procedure and a 2-D second order whitening filter.

Rotation-averaged power spectra on a log-log plot

10/ ——Original image
= = =Second order whitened image

P e S Log whitened image
w +=+=-Higher order whitened image
—— Higher order reconstructed image

Log magnitude

10" 10’ 10
Log frequency (o= squ[m:'m;]}

Figure 11: Power spectra plotted as a function of the rotation-averaged frequency
for comparison.

7 Conclusions

This paper is concerned with the problems and solutions encountered during the
acquisition of compressed multidimensional data, their transmission and process-
ing when the assumptions of Gaussianity in the signal and noise distributions and
linearity in processing need not hold simultaneously. While attempting such a
generalization one feels the need for more powerful analytical tools with which to
develop technical devices to tackle the increasing complexities of the models. For
example the fundamental concept of whitening for second order statistics based
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signal or data forms the nucleus for generalization to higher order whitening of
higher order statistics (HOS) based data, where both the higher order whitening
filter and its inverse have nonrational nonlinear input/output descriptions. Their
implementations are done by software for the simulated examples in this paper. A
modification of the second and higher order whitening filters in [11] is proposed in
this paper. It is seen from simulation on infrared images that the visual quality of
the reconstructed image is better using the proposed modifications. For example,
in Figure 8, black specks are seen in the white regions (corresponding to hotter ar-
eas) of the reconstructed image, while the specks are missing in the reconstructed
image in Figure 9. This suggests that the sgn factor is not only redundant but
also may be harmful in higher order filtering, Also, Gluckman’s conjecture that
the log magnitude second order whitened image follows the power law in Equation
(4) is not, necessarily true, as shown by the power spectrum plot in Figure 11, in
which the log whitened image spectrum is nearly flat.

The concept of whitening, in turn, has strong links to choice of bases for com-
pressed signal representation, their coding (sparse or otherwise) and reconstruction
by constrained optimization using mixed norms. These links are currently under
detailed investigation with respect to properties like wavelength diversity as briefly
reported here and elsewhere [19] with respect to visible and thermal wavelength
images. The results here contribute to the goal for unification of different but re-
lated concepts (like whitening and compressed signals) and further development of
mathematical (simultaneous matrix diagonalization, simultaneous matrix singular
value decomposition, simultaneous matrix polar decomposition) as well as proba-
bilistic descriptions (Gaussian as well as non-Gaussian distributions) for detection,
estimation, sampling and processing of signals.
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METODA REDUKCJI NADMIAROWOSCI W STRUMIENIU
DANYCH SEKWENCJI OBRAZOW

Streszczenie

Sekwencje obrazow zawieraja w sposob naturalny duzo strukturalnych powia-
zan (korelacji), co wiaze si¢ ze znaczna nadmiarowos$cia zawartych w nich informacji.
Dla szybkiego przetwarzania i transmisji danych cyfrowych o takich sekwencjach
konieczna jest redukcja w nich tych zbytecznych nadmiarowosci. W artykule zostata
zaproponowana i doglebnie przebadana metoda stuzaca temu celowi. Jest ona, jak
pokazano, efektywna. Od strony teoretycznej bazuje na zaproponowanych ulepsze-
niach, w wielu aspektach, technik dotychczas stosowanych.

Stowa kluczowe: metody redukcji nadmiarowosci w strumieniu danych sekwencji
obrazow



