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Summary: First, it is shown that applying the linear feedback increases the order of 

nonlinearity of the whole mildly nonlinear amplifier in comparison with that charac-

terizing the amplifier without this feedback. Second, the impact of this fact on har-

monics, which appear in the feedback amplifier driven by a single complex harmonic 

signal, is analyzed in detail.  Finally, the associated model of the feedback amplifier 

is derived. It is shown that using this model, and only then, it is possible to interpret 

correctly the means of harmonic distortion calculations in weakly nonlinear amplifi-

ers proposed by Palumbo and Pennisi in one of their recent papers. 
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1. INTRODUCTION 
 

The fact that feedback reduces nonlinear distortion is always pointed out in papers 

on mildly nonlinear circuits or systems, of which structure contains such a (linear) feed-

back. More precisely, and restricting ourselves here to consideration of only 

nonautonomous analog circuits like, for example, weakly nonlinear amplifiers, this is so 

expressed: the second and third order harmonic distortion factors or the second and 

third order intermodulation distortion factors of these amplifiers are considerably re-

duced by applying the linear negative feedback in their structures, in comparison to the 

structures without feedback. The amount of reduction of the harmonic or intermodula-

tion distortion factors can be calculated from expressions, which can be found in the 

literature on these topics. The feedback return ratio and the feedback return difference, 

well known quantities in the linear feedback theory [1], play a prominent role in them.  

 With regard to the context sketched shortly above, the pioneering work done by 

Narayanan [2] in this area should be mentioned. The results of his investigations were 

published in 1970. Since then numerous papers, and even books, devoted to the analysis 

and reducing nonlinear distortion in weakly nonlinear analog circuits and systems, 

appeared. Because of their huge number, we will not list all of them here. Amongst 

them, we mention only the recent one. It is a paper by Palumbo and Pennisi  [3] on the 

analysis of high-frequency harmonic distortion in weakly nonlinear feedback amplifi-
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ers. We refer here, in a course of presenting new results, to the method, some expres-

sions, and results published in [3] (of course, we could do this also with regard to oth-

ers, as for example, to those given by Narayanan [2]). 

 In all the papers mentioned above, only the advantageous effect of feedback is 

emphasized. That is the fact that it reduces nonlinear distortion in a circuit. Two disad-

vantageous effects of introducing feedback (which are of general nature and occur also 

when the negative type of feedback is applied) were not perceived at all. These are the 

following:  

1. The order of nonlinearity of the whole circuit, that is of the weakly nonlinear circuit 

to which a linear feedback was applied, increases. 

2. In consequence, new harmonics appear in the circuit containing feedback in compari-

son with this circuit without feedback when they are driven by a sinusoidal signal. 

 One of the main objectives of this paper is to explain in detail how and why the 

order of nonlinearity of a weakly nonlinear circuit increases after applying to it a linear 

feedback, and what is the mechanism of appearance of additional harmonics in the latter 

circuit. 

2. INCREASE OF ORDER OF NONLINEARITY BY INTRODUCING  

LINEAR FEEDBACK 
 

Consider a weakly nonlinear amplifier as shown in Fig. 1(a). Let its input-output 

characteristic be described by a nonlinear operator H. 

 

H 

xi xo
(a) 

(b) 

H 

xi xoxs

K 

xf

+

_

 
 

Fig. 1. Weakly nonlinear amplifier: (a) in configuration without feedback, (b) in closed-loop 

configuration containing linear feedback 

Rys. 1.  Nieliniowy wzmacniacz (z ma ymi nieliniowo ciami): (a) bez sprz enia zwrotnego,  

(b) w p tli z liniowym sprz eniem zwrotnym  

 

When a linear feedback represented by a block K is applied to this amplifier, we 

get a closed-loop configuration illustrated in Fig. 1(b). 

In Fig. 1(a), the input and output signals ix  and ox , respectively, of a continuous 

time t are related to each other through the operator H as 

 ( ) ( )( ) ( ) or shortly  .= =o i o ix t H x t x H x  (1) 
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In the feedback configuration of Fig. 1(b), we have two additional equations 

 = −i s fx x x  (2a) 

and 

 ( )=f ox K x  (2b) 

where now the input signal to the whole amplifier is denoted by sx . Moreover, fx  

means the feedback return signal supplied to the input of amplifier H by the linear feed-

back block K. The input-output characteristic of this block is described by a linear op-

erator K. 

 Substituting (2a) and (2b) into (1) gives 

 ( )( ).= −o s ox H x K x  (3) 

Equation (3) is obviously an implicit form of the input-output characteristic of the 

whole (feedback) amplifier. The task is to find its explicit form that is an operator 
fH  

defined as 

 ( ).=o f sx H x  (4) 

 Now, to understand better the problem of increase of the order of nonlinearity in 

the closed-loop, we consider first a weakly nonlinear amplifier in Fig. 1(b) of which 

both the components: the open-loop amplifier H and the linear feedback block K are 

frequency independent. Furthermore, assume that the amplifier H is described exactly 

by a third order polynomial. That is its description (exact) is in the form    

 ( ) 2 3
1 2 3== + +o i i i ix H x a x a x a x  (5) 

where the coefficients 1a , 2a , and 3a  are real numbers. This means that the nonlinear-

ity of the open-loop amplifier is of the third order. 

 Note that the above assumptions allow us to assume that the behavior of the opera-

tor fH  can be also described in form of a polynomial. However, we cannot assume  

a’priori that it will be a polynomial of the third degree (order), too. We must assume, 

generally, an infinite power series what will be evident from the course of further deri-

vations. That is 

 ( ) 2 3 4 5
1 2 3 4 5= ...= + + + + +o f s f s f s f s f s f sx H x a x a x a x a x a x  (6)  

where the coefficients 1 fa , 2 fa , 3 fa , 4 fa , 5 fa , and so on are real numbers with the 

letter “f “ in their subscripts standing for “feedback”. Moreover, rewrite (2b) for a fre-

quency independent linear feedback as 

 
f ox k x= ⋅  (7) 

where k is a real number. 

 Using the description (5) for H and substituting (6) and (7) into (3), we obtain 
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( )

( )

( )

2 3 4 5
1 2 3 4 5

2 3 4 5
1 1 2 3 4 5

2
2 3 4 5

2 1 2 3 4 5

3
2 3 4 5

3 1 2 3 4 5

..

..

..

.. .

+ + + + + =

= − + + + + + +

+ − + + + + + +

+ − + + + + +

f s f s f s f s f s

s f s f s f s f s f s

s f s f s f s f s f s

s f s f s f s f s f s

a x a x a x a x a x

a x k a x a x a x a x a x

a x k a x a x a x a x a x

a x k a x a x a x a x a x

 (8) 

Then, equating to each other the expressions of the same order (degree) – that is such which 

contain the same power of the variable sx  – on both sides of (8), we get successively 

 ( )1 1 1= −f s s f sa x a x ka x   (9a) 

 ( )
22 2

2 1 2 2 1= − + −f s f s s f sa x a ka x a x ka x  (9b) 

 ( ) ( )
33 3 2

3 1 3 2 1 2 3 12= − − − + −f s f s s f s f s s f sa x a ka x a x ka x ka x a x ka x  (9c) 

 
( )

( ) ( )

4 4 3
4 1 4 2 1 3

2 22 2
2 2 3 1 2

2

3

= − − − +

+ − −

f s f s s f s f s

f s s f s f s

a x a ka x a x ka x ka x

a ka x a x ka x ka x

 (9d) 

 
( )

( )( ) ( )

5 5 4 2 5
5 1 5 2 1 4 2 2 3

2 22 3
3 1 2 3 1 3

2 2

3 3

= − − − + +

+ − − −

f s f s s f s f s f f s

s f s f s s f s f s

a x a ka x a x ka x ka x a k a a x

a x ka x ka x a x ka x ka x

 (9e) 

and so on. From these equations, after eliminating sx  and performing a number of al-

gebraic manipulations, we obtain 

 1
1

11
=

+
f

a
a

ka
  (10a) 

 
( )

2
2 3

11
=

+
f

a
a

ka
  (10b) 

 
( ) ( )

2
3 2

3 4 5
1 1

2

1 1
= −

+ +
f

a a k
a

ka ka
 (10c) 

 
( )

( )

( )

3 2
2 3 12

4 7 6
1 1

5 35

1 1

+
= −

+ +
f

a a k kaa k
a

ka ka
 (10d) 

 
( )

( )

( ) ( )

2 2 24 3
2 3 1 32

5 9 8 7
1 1 1

21 6 314

1 1 1

+
= − + −

+ + +
f

a a k ka a ka k
a

ka ka ka
 (10e) 

and so on. 

Note from (10d) and (10e) that the coefficients 4 fa and 5 fa  are, generally, non-

zero. The same regards also the further coefficients 6 fa , 7 fa , and so on, in the expan-

sion (6). So really the degree (order) of the polynomial describing an amplifier after 
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adding to it a linear feedback is different from that describing the same amplifier but 

without feedback. It changed here from three in (5) to infinity in (6). 

So the conclusion is that the linear feedback has an influence upon the order of 

nonlinearity that is incorporated in the amplifier’s closed-loop description. Furthermore, 

observe that if the amplifier’s open-loop description as (5) would be in form of an infi-

nite power series we did not see the above effect. Probably of this reason, this effect 

was not perceived before.  

 At this point, we pay also the reader’s attention to the fact that the radius of convergence 

of the (finite) power series (5) is infinite, and it does not mean that the same holds for the (infi-

nite) power series (6), too. Probably, the latter has a finite radius of convergence and it must be 

found. From the form of expressions (10a-e), we see that it is not a simple task. 

A more general case of a weakly nonlinear amplifier in Fig. 1(b), of which both the 

components: the open-loop amplifier H and the linear feedback block K are frequency de-

pendent, is also, as we will see, more cumbersome. Assume then that the amplifier H is 

described (in the time domain) by a Volterra series [4, 5] consisting of only first three com-

ponents. That is its description (exact) will be, analogously to (5), in the following form 

( ) ( )( ) ( ) ( ) ( )1 2 3 (1) (2)
1 2

(3)
1 2 1 2 1 2 3 1 2 3 1 2 3

( ) ( ) ( ) ( ) ( ) ( , )

( ) ( ) ( , , ) ( ) ( ) ( )  .

∞ ∞ ∞

−∞ −∞−∞

∞ ∞ ∞

−∞−∞−∞

= = + + = − + + ⋅

⋅ − − + − − −

o i o o o i

i i i i i

x t H x t x t x t x t h x t d h

x t x t d d h x t x t x t d d d

τ τ τ τ τ

τ τ τ τ τ τ τ τ τ τ τ τ τ

 (11) 

The terms 
( )1

( )ox t , 
( )2

( )ox t , and 
( )3

( )ox t  in (11), which are the respective components of 

( )ox t , we call the amplifier partial responses of the first, second, and third order, re-

spectively. This order is with respect to a variable representing the signal (here, in (11), 

ix ). Furthermore, by ( ) ( )1
h t , ( ) ( )2

1 2,h t t , and ( ) ( )2
1 2 3, ,h t t t  we denote, respectively, 

the first (linear), second, and third order, nonlinear impulse responses of the amplifier 

without feedback. 

 The equivalent of (6) will be now an infinite Volterra series as  

 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( )

( )

1 2 3 4 5

1 2
1 2 1 2 1 2

3
3

1 2 3
1

4
4

1 2 3 4
1

( ) ( ) ( ) ( ) ( ) ...

( ) ( ) ( , ) ( ) ( )

( , , ) ( )

( , , , )

∞ ∞ ∞

−∞ −∞ −∞

∞ ∞ ∞

=
−∞ −∞ −∞

∞ ∞ ∞ ∞

=
−∞ −∞ −∞ −∞

= = + + + + + =

= − + − − +

+ Π − +

+ Π

o f s o o o o o

s s sf f

s k kf
k

sf
k

x t H x t x t x t x t x t x t

h x t d h x t x t d d

h x t d

h x

τ τ τ τ τ τ τ τ τ

τ τ τ τ τ

τ τ τ τ

( ) 5
5

1 2 3 4 5
1

( )

( , , , , ) ( ) ... .

∞ ∞ ∞ ∞ ∞

=
−∞ −∞ −∞ −∞ −∞

− +

+ Π − +

k k

s k kf
k

t d

h x t d

τ τ

τ τ τ τ τ τ τ

 (12) 
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And the equivalent of (7) will be the linear convolution having the form 

   ( ) ( )( ) ( ) ( ) .

∞

−∞

= = −f o ox t K x t k x t dτ τ τ  (13) 

In (12) and (13), the letter “f “ in subscripts stands, as before, for “feedback”. Further-

more, 
( ) ( )
1

f
h t , 

( ) ( )
2

1 2,
f

h t t , 
( ) ( )
3

1 2 3, ,
f

h t t t , 
( ) ( )
4

1 2 3 4, , ,
f

h t t t t , 
( ) ( )
5

1 2 3 4 5, , , ,
f

h t t t t t , and 

so on are, respectively, the first (linear), second, third, fourth, fifth order, and next or-

ders, nonlinear impulse responses of the feedback amplifier. Moreover, the function 

( )k t  in (13) is the (linear) impulse response of the now frequency dependent block K 

in Fig. 1(b). 

 Substituting ox  and fx  given by (12) and (13), respectively, into (3), and using 

also in (3) the formula (11) for the operator H, we get an equivalent of (8) for this far 

more complicated case with the amplifier and feedback in Fig. 1(b) being frequency 

dependent. In the next step, we proceed with the resulting equation similarly as before. 

That is we equate to each other expressions of the same order (degree) occurring on its 

both sides. More precisely, we equate expressions in which the number of appearances 

of the variable sx  is the same. As a result, we get the equivalent of equations (9a-e). 

 Further procedure leading to getting the equivalents of (10a-e) is quite involved 

because of occurrence of a huge number of multidimensional integrals in equivalents of 

(9a-e). In such situations, the method usually used, which is dated back to the appear-

ance of the work [2], is carrying out the transformation of equations to the frequency 

domain by the use of the multidimensional Fourier (or Laplace) transforms. In conse-

quence, one obtains the nonlinear transfer functions of a mildly nonlinear circuit. In the 

case of calculation of nonlinear transfer functions of the fourth or fifth order, and of 

next orders, for a circuit of Fig. 1(b), it is needed to carry out a huge number of alge-

braic manipulations to get the final results. The higher the order, the larger is the num-

ber of manipulations. 

 We will not do this here (details of these calculations will be eventually published 

later). The important for us here is one result that follows from these calculations. That 

is, similarly as in the case of (10a-e), we get (generally) nonzero nonlinear transfer 

functions of the fourth, fifth, and of higher orders for the circuit in Fig. 1(b). And fi-

nally, it follows from the latter that the nonlinear impulse responses related with them 

(through the inverse transforms) are nonzero functions, too. 

 So the conclusions, which can be drawn from the above, are similar to those pre-

sented a while before for the structure of Fig. 1(b) considered to be purely frequency 

independent. First, the Volterra series describing a mildly nonlinear amplifier after 

adding to it a linear feedback (with memory) has a different number of components 

from that describing the same amplifier but without feedback. This number changed 

here from three in (11) to infinity in (12). 

 Second, which is related to the previous conclusion, we observe that the linear 

feedback (with memory) has an influence upon the order of nonlinearity that is repre-

sented in the amplifier’s closed-loop description by a Volterra series through the high-

est partial response in it. Furthermore, observe that if the amplifier’s open-loop descrip-

tion as (11) would be in form of a Volterra series containing the infinite number of 
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components, we did not see the above effect. Probably of this reason, this effect was not 

reported in the literature up to now. 

 

 

3. FEEDBACK AND POWER SERIES-LIKE MODEL OF WEAKLY 

NONLINEAR AMPLIFIER WITH MEMORY 

 

 In [3], Palumbo and Pennisi have developed a power series-like model for weakly 

nonlinear amplifiers with memory in configuration (without feedback) of Fig. 1(a). It 

has the following form 

 ( ) ( ) ( )2 3
1 2 3= + +o i i ix a j x a j x a j xω ω ω   (14) 

in the notation of [3]. In (14), 2 fω π=  means the angular frequency with f denoting 

the usual frequency variable. Moreover, 1= −j  and the frequency-dependent coeffi-

cients ( )1a jω , ( )2a jω , and ( )3a jω  are the coefficients in this (truncated) power 

series-like description of a mildly nonlinear amplifier with memory.  

 One thing is very important of which we must be aware when applying the model 

given by (14). This is the fact that it is valid only for input signals of the form  

 ( ) ( )exp=i ix t A j tω  (15) 

where iA  is a real number and means the amplitude of this complex harmonic signal. In 

other words, (14) does not represent a Volterra series valid for any input signal, but 

only for such that having the form ( ) ( )exp=i ix t A j tω .     

 The above is evident from the derivation of (14) which can be done by substituting 

( )ix t  given by (15) into the finite Volterra series consisting of only first three compo-

nents (such as that in (11)) and performing next the needed operations in it, as shown in 

the following  

  

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

(1) (2) 2
1 2 1

(3) 3
2 1 2 1 2 3 1 2

(1) 2
3 1 2 3

( ) exp ( ) ( , ) exp ( )

exp ( ) ( , , ) exp ( ) exp ( )

exp ( ) exp ( )exp ) exp 2

∞ ∞ ∞

−∞ −∞ −∞

∞ ∞ ∞

−∞ −∞ −∞

∞

−∞

= − + − ⋅

⋅ − + − − ⋅

⋅ − = − + ⋅

⋅

o i
i

i

i
i

x t h A j t d h A j t

j t d d h A j t j t

j t d d d A j t h j d A j t

h

τ ω τ τ τ τ ω τ

ω τ τ τ τ τ τ ω τ ω τ

ω τ τ τ τ ω τ ωτ τ ω

( ) ( )

( )

(2) 3 (3)
1 2 1 2 1 2 1 2 3

1 2 3 1 2 3

( , )exp ( ) exp 3 ( , , )

exp 3 ( )  .

∞ ∞ ∞ ∞ ∞

−∞ −∞ −∞ −∞ −∞

− + + ⋅

⋅ − + +

i
j d d A j t h

j d d d

τ τ ω τ τ τ τ ω τ τ τ

ω τ τ τ τ τ τ

 (16) 

Applying in (16) the notion of n-dimensional Fourier transforms [5], here for n = 1, 2 or 3, 

and choosing the same frequency point  f  at each dimension, we arrive finally at 
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( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1

2 2

2 3

exp 2

, exp 2 2

, , exp 2 3

o i

i

i

x t H f A j ft

H f f A j ft

H f f f A j ft

π

π

π

= +

+ +

+

 (17) 

where 
( ) ( )1

H f , 
( ) ( )2

,H f f , and 
( ) ( )3

, ,H f f f  denote the Fourier transforms (men-

tioned above) of ( ) ( )1
h t , ( ) ( )2

1 2,h t t , and ( ) ( )3
1 2 3, ,h t t t , respectively, at the same 

frequency point  f  chosen at each dimension. At this point, note also that 
( ) ( )1

H f , 

( ) ( )2
,H f f , and 

( ) ( )3
, ,H f f f  are called the circuit nonlinear transfer functions of 

the first (linear one), of the second, and of the third order, accordingly. Furthermore, 

( )2f ω π=  in (17). 

 Observe that (17) is identical with (14) when we identify ( )1a jω  with ( ) ( )1
H f , 

( )2a jω  with 
( ) ( )2

,H f f , and ( )3a jω  with ( ) ( )3
, ,H f f f . 

  In this paper, we call shortly the signal of the form given by (15) a harmonic at 

frequency  (or equivalently f ). From (17), we see that an amplifier in the structure of 

Fig. 1(a), having the description given by (11), and driven by a single harmonic at fre-

quency f has three (and only three) harmonics, at frequencies f, 2f, and 3f, at its output. 

Observe that this number is identical with the number of components in the finite 

Volterra series (11). Moreover, the number three staying at 3f (at the highest frequency 

of these harmonics) is equal to the order of nonlinearity incorporated in the amplifier 

description (identical with the highest order among partial responses in the Volterra 

series). 

 Note now that we have a quite different situation when the linear feedback (with 

memory) as in Fig. 1(b) is applied to the amplifier characterized above. Then, we must 

use for the whole amplifier, as shown in the previous section, an infinite Volterra series 

of the form (12). And it is clear from the derivation underlying (17) that, in this case, 

after substituting into (12) the input signal denoted now as 

 ( ) ( )exp=s sx t A j tω  (18) 

where sA  is a real number and means the amplitude of this harmonic signal, and per-

forming afterwards the needed operations in it, we get finally an equivalent of (17) as 

  

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 2 2

3 43 4

5 5

exp 2 , exp 2 2

, , exp 2 3 , , , exp 2 4

, , , , exp 2 5 ... .

= + +

+ + +

+ +

o s sf f

s sf f

sf

x t H f A j ft H f f A j ft

H f f f A j ft H f f f f A j ft

H f f f f f A j ft

π π

π π

π

 (19) 
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In (19), similarly as before, 
( ) ( )
1

f
H f , 

( ) ( )
2

,
f

H f f , 
( ) ( )
3

, ,
f

H f f f , 

( ) ( )
4

, , ,
f

H f f f f , 
( ) ( )
5

, , , ,
f

H f f f f f , and so on are, respectively, the Fourier trans-

forms of 
( ) ( )
1

f
h t , 

( ) ( )
2

1 2,
f

h t t , 
( ) ( )
3

1 2 3, ,
f

h t t t , 
( ) ( )
4

1 2 3 4, , ,
f

h t t t t , 
( ) ( )
5

1 2 3 4 5, , , ,
f

h t t t t t , 

and of the next nonlinear impulse responses. They are calculated here at the same fre-

quency point  f  chosen at each dimension. Furthermore, these functions are called the 

nonlinear transfer functions of the corresponding orders of the feedback amplifier. 

 Observe from (19) that, opposite to the previous case, we have at the output of the 

same amplifier, which is put now into the feedback structure of Fig. 1(b), an infinite 

number of harmonics, having frequencies f, 2f, 3f, 4f, 5f, and so on. Note further that 

this infinite number of harmonics corresponds with the infinite number of components 

in the Volterra series (12). This (infinite) number is equal to the order of nonlinearity 

incorporated in the description (12) (i.e. identical with the highest order of the partial 

response in the Volterra series which is here infinite). 

 

 

4. RESCUE FOR PALUMBO AND PENNISI’S MEANS OF MODELING 

WEAKLY NONLINEAR FEEDBACK AMPLIFIERS 
 

 It follows evidently from the results of the previous two sections that the power 

series-like model for weakly nonlinear amplifiers expressed by (14) cannot be applied 

to study the feedback structure of Fig. 1(b). More precisely: 

1. It is not a proper model for the whole circuit with feedback as represented by  

Fig. 1(b). Then, as we have shown, expression (19) must be used instead of (17) 

(which is identical with (14)). 

2. It is not also a proper model for modeling the input-output behavior of the weakly 

nonlinear amplifier H in Fig. 1(b) because the input signal at its input is now a sum 

of an infinite number of harmonics (not a single harmonic of the form 

( ) ( )exp 2=i ix t A j ftπ ). 

Nevertheless, it has been used in the above context in an approach developed by 

Palumbo and Pennisi in [3] for calculation of harmonic distortion in weakly nonlinear 

feedback amplifiers. See equations: (15) in [3] and (10) in [6] – with regard to point 1, 

and equations: (17) in [3] and (A3) in [6] – with regard to point 2, for example. 

 We derive here a model that enables to obtain correctly the results presented by 

Palumbo and Pennisi in [3]. It is an associated model incorporating some simplifica-

tions with regard to the original formulation. So, for that reason, it can lead to results 

that are not necessarily identical with those one gets with the use of the original model. 

And, concluding, the approach from [3] for feedback amplifier should be perceived 

similarly.       

 To achieve our goal mentioned above, we proceed now in the following way: 

First, we postulate the form as shown in Fig. 2 for an associated model we look for. 

Then, we check whether it really describes correctly the results presented by Palumbo 

and Pennisi in [3]. 
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Fig. 2.  Associated model of weakly nonlinear amplifier in closed-loop configuration 

containing linear feedback 

Rys. 2. Stowarzyszony model nieliniowego wzmacniacza w p tli z liniowym sprz eniem 

zwrotnym 

 

In Fig. 2, an ideal filter F plays a role of a filter that allows only the harmonics at 

frequencies f, 2f, and 3f at the output of H to pass to the output of the whole amplifier. It 

fully rejects all the other harmonics. In consequence, under the assumption of the input 

signal to the whole amplifier sx  being given by (18), we get such a situation in the loop 

of Fig. 2 that the signals iax , ofx , and 
fax  contain exclusively harmonics of the fre-

quencies f, 2f, and 3f. Other harmonics occur in the circuit of Fig. 2 only at the output of 

the amplifier H. That is they are components of the signal oax  (besides the harmonics 

at frequencies f, 2f, and 3f). 

It follows from the above and the results of previous sections that the signals iax , 

oax , and fax  in the associated model of Fig. 2 are not identical with the corresponding 

signals ix , ox , and fx  of the original model of Fig. 1(b). For that reason, we use an 

additional letter “a” in their subscript notation. Of course, this additional letter should 

be also put at the subscript of the symbol of filter F output signal occurring in Fig. 2. 

However, that more consistent notation ofax  has been abbreviated in this case to ofx , 

to avoid too long subscripts, and in such a form is used in the paper.  

Observe now that the signal 
iax , as containing three harmonics, can be expressed 

in the following way 

 ( ) ( ) ( ) ( )1 2 3exp 2 exp 2 2 exp 2 3ia i i ix t A j ft A j ft A j ftπ π π= + +  (20) 

where 1iA , 2iA , and 3iA  are real numbers and mean the amplitudes of the correspond-

ing harmonics at frequencies f, 2f, and 3f, respectively. 

 As we already know the form given by (14) for a power series-like model cannot 

be used to model the amplifier H in Fig. 1(b) or in Fig. 2. Remember that it is so be-

cause (14) is valid only for input signals being single harmonics. Extension of applica-

bility of the power series-like model is however possible. We do this by finding each 

time its specific form, for a particular input signal. So, for H in the original model of 

Fig. 1(b), a counterpart of (14) must be derived assuming the input signal in form of an 

infinite sum of harmonics at frequencies f, 2f, 3f, 4f, 5f, and so on. Further, in the case 

of H in the associated model of Fig. 2, the situation is simpler in comparison with the 

latter. Then, we have to consider in the calculations the input signal consisting of only 

three harmonics (at frequencies f, 2f, and 3f) as in (20). 
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 Now, we will derive a power series-like formula regarding the latter case. To this 

end, we use a specific form of the Volterra series that enables to express its components 

(partial responses) through the circuit nonlinear transfer functions – for more details see 

[5]). So applying it to the series (11), we get the following expressions for its components: 

 
( ) ( ) ( ) ( ) ( )1 1

1 1 1 1exp( 2 )o ix t H f X f j f t dfπ
∞

−∞

=  (21a) 

 
( ) ( ) ( ) ( ) ( ) ( )2 2

1 2 1 2 1 2 1 2, exp( 2 ( ))o i ix t H f f X f X f j f t f t df dfπ
∞ ∞

−∞ −∞

= +  (21b)  

 

( ) ( ) ( ) ( ) ( ) ( )

( )

3 3
1 2 3 1 2

3 1 2 3 1 2 3

, ,

  exp( 2 ( ))    

o i i

i

x t H f f f X f X f

X f j f t f t f t df df dfπ

∞ ∞ ∞

−∞ −∞ −∞

= ⋅

⋅ + +

 (21c) 

where ( ) ,i xX f  x = 1, 2, 3, means the Fourier transform of the input signal, and the sets 

of frequency variables: { }1f , { }1 2,f f , and { }1 2 3, ,f f f  occurring in (21a), (21b), and 

(21c), respectively, form the corresponding one-, two-, and three-dimensional fre-

quency spaces. 

 The Fourier transform of the input signal to the amplifier H in Fig. 2 is given by 

 ( ) ( ) ( ) ( )1 2 32 3ia x i x i x i xX f A f f A f f A f fδ δ δ= − + − + −  (22) 

where δ  means the Dirac impulse and  fx  is the current frequency in the Fourier trans-

form. 

 Specializing the general expressions (21a), (21b), and (21c) to the case of H in the 

structure of Fig. 2 means introduction in them ( )ia xX f  instead of ( )i xX f , and adding 

the letter “a” at the subscripts by 
( ) ( )1
ox t , ( ) ( )2

ox t , and 
( ) ( )3
ox t . Carrying out after-

wards the standard algebraic manipulations, exploiting the sifting property of the Dirac 

impulse and using the symmetric nonlinear transfer functions in them, we get finally 

 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

1 1 1
1

1
2 3

exp( 2 ) 2

exp( 2 2 ) 3 exp( 2 3 )

oa i

i i

x t H f A j ft H f

A j ft H f A j ft

π

π π

= + ⋅

⋅ +

  (23a) 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

2 2 22
1

2
1 2 1 3

2 22
2 2 3

2 2
3

, exp( 2 2 ) 2 , 2

exp( 2 3 ) 2 ,3 exp( 2 4 )

2 , 2 exp( 2 4 ) 2 2 ,3 exp( 2 5 )

3 ,3 exp( 2 6 )

oa i

i i i i

i i i

i

x t H f f A j ft H f f

A A j ft H f f A A j ft

H f f A j ft H f f A A j ft

H f f A j ft

π

π π

π π

π

= + ⋅

⋅ + +

+ + +

+

 (23b) 
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

3 3 33 2
1 1 2

3 32
1 3

32
1 2 1 2 3

, , exp( 2 3 ) 3 , , 2 exp( 2 4 )

3 , ,3 exp( 2 5 ) 3 , 2 , 2

exp( 2 5 ) 6 , 2 ,3 exp( 2 6 )

oa i i i

i i

i i i i i

x t H f f f A j ft H f f f A A j ft

H f f f A A j ft H f f f

A A j ft H f f f A A A j ft

π π

π

π π

= + +

+ + ⋅

⋅ + +
 (23c)

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

3 33 2
2 1 3

3 32
2 3

32 3
2 3 3

2 ,2 ,2 exp( 2 6 ) 3 ,3 ,3 exp( 2 7 )

3 2 ,2 ,3 exp( 2 7 ) 3 2 ,3 ,3

exp( 2 8 ) 3 ,3 ,3 exp( 2 9 ) .

i i i

i i

i i i

H f f f A j ft H f f f A A j ft

H f f f A A j ft H f f f

A A j ft H f f f A j ft

π π

π

π π

+ + +

+ + ⋅

⋅ +

  

 Denoting the components of ( )iax t  in (20) as ( ) ( )1 1 exp 2i ix t A j ftπ= , 

( ) ( )2 2 exp 2 2i ix t A j ftπ= , and ( ) ( )3 3 exp 2 3i ix t A j ftπ= , respectively, applying 

them afterwards in (23a), (23b), and (23c), and summing the partial responses, we ob-

tain the following 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

2
1 1 2 2 3 3 11 1 12 1 2

2 2
13 1 3 22 2 23 2 3 33 3

3 2 3
111 1 112 1 2 333 1

2

2 2

3 ......

oa i i i i i i

i i i i i i

i i i i

x a j x a j x a j x a j x a j x x

a j x x a j x a j x x a j x

a j x a j x x a j x

ω ω ω ω ω

ω ω ω ω

ω ω ω

= + + + +

+ + + + +

+ + + +

 (24) 

where the expressions describing the coefficients in the resulting multivariate polynomial 

can be easily determined by comparison of (24) with (23a), (23b) or (23c). So we have 

( ) ( ) ( )1
1a j H fω = , ( ) ( ) ( )1

2 2a j H fω = , ( ) ( ) ( )1
3 3a j H fω = , ( ) ( ) ( )2

11 ,a j H f fω = , 

( ) ( ) ( )2
12 2 ,2a j H f fω = , ( ) ( ) ( )2

13 2 ,3a j H f fω = , .… , ( ) ( ) ( )2
33 3 ,3a j H f fω = , 

( ) ( ) ( )3
111 , ,a j H f f fω = , ( ) ( ) ( )3

112 3 , ,2a j H f f fω = , … , ( ) ( ) ( )3
333 3 ,3 ,3a j H f f fω = . 

(By the way, note that the principle of indexing the coefficients of the multivariate 

polynomial in (24) is a little bit different than that used in (14).) 

 Expression (24) is a direct counterpart of (14) for correct modeling the input-

output behavior of the amplifier H in the associated model of Fig. 2. We see however 

that it is much more complicated than (14), and thereby very heavy to use. So we resign 

from this form in further derivations. In what follows, we prefer to use the other form of 

the power series-like model that is summarized in equations (23a-c). 

 Note now that for the structure of Fig. 2 we can write the following two equations 

(in the operator form) 

 fa s iax x x= −  (25a) 

and 

 fa iax KFHx=  (25b) 

where F stands for the mapping which is carried out by the ideal filter F of Fig. 2, ac-

cording to the rule described beneath this figure. 
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Using (25a) in (25b), we get 

 .s ia ia oax x KFHx KFx− = =  (26) 

Further, knowing that the signal ( ) ( )( )oa iax t Hx t=  at the output of the amplifier H in 

Fig. 2 is equal to the sum 
( ) ( ) ( )1 2 3

( ) ( ) ( )oa oa oax t x t x t+ +  with its components given by (23a-c), 

and applying to it the filtering rule of the filter F, we arrive for the signal ( )( )oaFx t  at 

 

( )( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

1 1
1 2

1 2 22
3 1

3 3
1 2 1

exp( 2 ) 2 exp( 2 2 )

3 exp( 2 3 ) , exp( 2 2 ) 2 ,2

exp( 2 3 ) , , exp( 2 3 ) .

oa i i

i i

i i i

Fx t H f A j ft H f A j ft

H f A j ft H f f A j ft H f f

A A j ft H f f f A j ft

π π

π π

π π

= + +

+ + + ⋅

⋅ +

 (27) 

The linear feedback block K (as a linear circuit with memory) transfers the signal (27) 

to its output according to the following formula 

 

( )( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 1
1

1
2 3

2 22
1 1 2

3 3
1

exp( 2 ) 2 2

exp( 2 2 ) 3 3 exp( 2 3 ) 2

, exp( 2 2 ) 2 3 ,2

exp( 2 3 ) 3 , , exp( 2 3 ) .

oa i

i i

i i i

i

KFx t K f H f A j ft K f H f

A j ft K f H f A j ft K f

H f f A j ft K f H f f A A

j ft K f H f f f A j ft

π

π π

π

π π

= +

⋅ + + ⋅

⋅ + ⋅

⋅ +

 (28) 

( )xK f  on the right-hand side of (28) means the transfer function of the linear feedback 

block K, calculated at the corresponding frequencies ,  2  or 3 . xf f f f=   

 Introducing (18), (20), and (28) into (26) gives 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 2 3

1 1
1 2

1 2 2
3 1

2 3 3
1 2 1

exp 2 exp 2 exp 2 2 exp 2 3

exp( 2 ) 2 2 exp( 2 2 ) 3

3 exp( 2 3 ) 2 , exp( 2 2 )

2 3 ,2 exp( 2 3 ) 3 , , exp( 2 3 ) .

s i i i

i i

i i

i i i

A j ft A j ft A j ft A j ft

K f H f A j ft K f H f A j ft K f

H f A j ft K f H f f A j ft

K f H f f A A j ft K f H f f f A j ft

π π π π

π π

π π

π π

− − − =

= + + ⋅

⋅ + ⋅ +

+ +

 (29) 

The next step is to equate to each other the expressions staying by the exponents of the 

same frequency on both sides of (29). As a result, we get 

 ( ) ( ) ( )1
1 1s i iA A K f H f A− =  (30a) 

 ( ) ( ) ( ) ( ) ( ) ( )1 2 2
2 2 12 2 2 ,i i iA K f H f A K f H f f A− = +  (30b) 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1
3 3

2 3 3
1 2 1

3 3 2 3

,2 3 , ,  .

i i

i i i

A K f H f A K f

H f f A A K f H f f f A

− = + ⋅

⋅ +

 (30c) 



Andrzej Borys 18 

Now, solving (30a) for 1iA , afterwards solving (30b) for 2iA  and using 1iA  from the 

previous step, and finally solving (30c) for 3iA  and using 1iA  and 2iA  from the previ-

ous two steps, we obtain successively 

 

( ) ( ) ( )
1 1

1

s
i

A
A

K f H f
=

+
 (31a) 

 
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2

2 2
1 1

2 ,

1 2 2 1

s
i

K f H f f A
A

K f H f K f H f

−
=

+ +

 (31b) 

 

( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

3

3 2
1 1

2 2
3

1

3

1 3 3 1

2 , 2 ,2
, ,  .

1 2 2

s
i

K f A
A

K f H f K f H f

H f f K f H f f
H f f f

K f H f

= ⋅

+ +

⋅ − +
+

 (31c) 

 Having the expressions determining the amplitudes 
1iA , 

2iA , and 
3iA  as the func-

tions of the amplitude 
sA , we can eliminate them from (27). This leads to  

 
( ) ( )( ) ( )

( ) ( )

1

2 3
2 3

2 exp( 2 )

2 2 exp( 2 2 ) 2 3 exp( 2 3 )

of oa f s

f s f s

x t Fx t a j f A j ft

a j f A j ft a j f A j ft

π π

π π π π

= = +

+ +
 (32) 

with the functions ( )1 2fa j fπ , ( )2 2fa j fπ , and ( )3 2fa j fπ  given by 

 ( )
( ) ( )

( ) ( ) ( )

1

1 1
2

1
f

H f
a j f

K f H f
π =

+
 (33a) 

 ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2

2 2
1 1

,
2

1 1 2 2
f

H f f
a j f

K f H f K f H f

π =
+ +

 (33b) 

 

( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

3

3 3
1 1

2 2 1

1 3 1

, ,
2

1 1 3 3

2 , , 2 2 2
1  .

2 , , 1 2 2

f

H f f f
a j f

K f H f K f H f

H f f H f f K f H f

H f H f f f K f H f

π = ⋅

+ +

⋅ − ⋅
+

 (33c) 
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 Note now that introducing in (33a-c) the following notation for the nonlinear 

transfer functions: 
( ) ( ) ( )1

1 2H f a j fπ= , 
( ) ( ) ( )2

2, 2H f f a j fπ= , and ( ) ( )3
, ,H f f f =   

( )3 2a j fπ= we get the expressions identical with those given in [3] for the so-called 

closed-loop nonlinear coefficients. Therefore, we conclude that (32) is identical with 

the corresponding power series-like description for the whole amplifier that has been 

used in [3] (see equation (15) in [3]). And this ends the proof of the statement that the 

proper model for the results presented by Palumbo and Pennisi [3] for the feedback 

amplifier is the associated model in Fig. 2. 

 (On the occasion, we put the reader’s attention to the fact that a small correction is 

needed in equation (19) in [3] because, generally, 
( ) ( ) ( ) ( )2 2

, , 2H f f H f f≠ .) 

 In summary, having in mind the results of this and of the previous section, we can 

say that the means of calculation of harmonic distortion in weakly nonlinear feedback 

amplifies developed in [3] relies upon the approximation of the original model in Fig. 

1(b) by the associated model in Fig.2. It is assumed that writing 

 ( ) ( )( ) ( )of oa ox t Fx t x t= ≅  (34) 

makes sense. The validity of (34) has been checked in [3] by carrying out calculations 

for some CMOS amplifiers and their comparison with the results of exact simulations.  

 

 

BIBLIOGRAPHY 

 
[1] S.S. Hakim, 1966: Feedback Circuit Analysis. Wiley, New York. 

[2] S. Narayanan, 1970: Application of Volterra series to intermodulation distortion 

analysis of transistor feedback amplifiers. IEEE Trans. Circuit Theory, vol. CT-17, 

pp. 518-527. 

[3] G. Palumbo, S. Pennisi, 2003: High-frequency harmonic distortion in feedback 

amplifiers: analysis and applications. IEEE Trans. Circuits and Systems-I: Funda-

mental Theory and Applications, vol. 50, pp. 328-340. 

[4] E. Bedrosian, S.O. Rice, 1971: The  output  properties  of  Volterra  systems (non-

linear systems  with  memory)  driven  by  harmonic  and  Gaussian  inputs. Proce-

edings of  the IEEE, vol. 59, pp. 1688-1707. 

[5] J.J. Bussgang, L. Ehrman, J.W. Graham, 1974: Analysis of nonlinear systems with 

multiple inputs. Proceedings of the IEEE, vol. 62, pp. 1088-1119.  

[6] S.O. Cannizzaro, G. Palumbo, S. Pennisi, 2006: Effects of nonlinear feedback in 

the frequency domain. IEEE Trans. Circuits and Systems-I: Fundamental Theory 

and Applications, vol. 53, pp. 225-234. 

 

 



Andrzej Borys 20 

O WP YWIE SPRZ ENIA ZWROTNEGO NA SK ADOWE  

HARMONICZNE W UK ADACH ANALOGOWYCH  

Z MA YMI NIELINIOWO CIAMI 
 

Streszczenie 

 
W pracy pokazano, e zastosowanie liniowego sprz enia zwrotnego w uk a-

dzie wzmacniacza analogowego pracuj cego w zakresie tzw. ma ych nieliniowo ci 

powoduje zwi kszenie rz du nieliniowo ci wykazywanej przez ten wzmacniacz  

w porównaniu ze wzmacniaczem bez sprz enia. Przeanalizowano wp yw powy szego 

zjawiska na sk adowe harmoniczne wy szych rz dów, powstaj ce przy pobudzeniu 

wzmacniacza pojedynczym sygna em harmonicznym. Ponadto wyprowadzono model 

stowarzyszony wzmacniacza ze sprz eniem zwrotnym. Pokazano, e wykorzystuj c 

ten model, i tylko wtedy, mo na zinterpretowa  w sposób prawid owy metod  obli-

cze  zniekszta ce  harmonicznych we wzmacniaczach analogowych pracuj cych  

w zakresie tzw. ma ych nieliniowo ci, która to zosta a zaproponowana przez Palumbo 

i Pennisi w jednym z ich ostatnio opublikowanych artyku ów. 

S owa kluczowe:  analiza zniekszta ce  harmonicznych, uk ady i systemy analogo-

we pracuj ce w zakresie tzw. ma ych nieliniowo ci, sprz enie 

zwrotne, wp yw sprz enia zwrotnego na sk adowe harmoniczne 

wy szych rz dów, szereg Volterry 

 

 


