PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simulation of trans-1,4,5,8-Tetranitrodecahydropyrazino [ 2,3-b]pyrazine Decomposition Mechanism

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
EN
On the basis of the earlier methodology developed for generation of thermal decomposition mechanisms for organic compounds, computer simulation of trans-1,4,5,8-tetranitrodecahydro-pyrazino[2,3-b]pyrazine (TNAD) degradation is performed. The probable pathways of this decomposition are examined. The activation energies of reactions at the initial step of TNAD degradation are calculated using the B3LYP/6-31G* level of the density functional theory. The results are compared with the experimental data. The preferable pathway of TNAD thermal decomposition is revealed.
Słowa kluczowe
Rocznik
Strony
77--85
Opis fizyczny
Bibliogr. 13 poz.
Twórcy
Bibliografia
  • [1] Manelis G.B., Nazin G.M., Rubtsov Yu.I., Strunin V.A., Termicheskoe razlozhenie i gorenie vzryvchatykh veshchestv i porokhov (in Russian), [Thermal Decomposition and Combustion of Explosives and Powders], Nauka, Moscow 1996, p. 223.
  • [2] Prabhakaran K.V., Bhide N.M., Kurian E. M., Thermochim. Acta, 1995, 249-258.
  • [3] Dong H., Hu R., Pu Y., Zhan X., Thermograms of Energetic Materials, Natl. Def. Ind. Press, Beijing 2002, 153-154.
  • [4] Rongzu H., Zheongouan Y., Yanjun L., Thermochim. Acta, 1988, 23, 135-151.
  • [5] Burov Y.M., Kucherova I.S., Thermal Decomposition of the trans-1,4,5,8-Tetranitro-1,4,5,8-tatraazadecalin, Proc. 9th Seminar ”New Trends in Research of Energetic Materials”, Pardubice, Czech Republic, 2006, pp. 526-528.
  • [6] Korolev V.L., Petukhova T.V., Pivina T.S., Porollo A.A., Sheremetev A.B., Suponitsky К.Yu., Ivshin V.P., Thermal decomposition mechanisms of nitro-1,2,4-triazols: a theoretical study, Russian Chemical Bulletin, Int. Ed., 2006, 55(8),1388-1410.
  • [7] Koch W., Holthausen M.C., A Chemist’s Guide to Density Functional Theory, Wiley-VCH, Weinheim 2001, p. 300.
  • [8] Clark T., A Handbook of Computational Chemistry, J. Wiley and Sons, New York 1985, p. 383.
  • [9] Software «Gaussian-98» supported by Computer Centre of Chemical Investigations, Russian Academy of Sciences.
  • [10] Burov Y.M., Nazin G.M., The Infuence of Structure to Decomposition Rate of the Secondary Nitro Amines in Gas Phase, J. Kinetics and Catalysis (in Russian), 1982, 23, 12-17.
  • [11] Bulusu S., Weinstein D.I., Autera J.R., Velicky R.W., Deuterium Kinetic Isotope Effect in the Thermal Decomposition of 1,3,5-Trinitro-1,3,5-triazacyclohexane and 1,3,5,7-Tetranitro-1,3,5,7-tetraazacyclooctane: Its Use as an Experimental Probe for Their Shock-Induced Chemistry, J. Phys. Chem., 1986, 90, 4121-4126.
  • [12] Zhao X., Hintsa E.J., Lee Yu.T., Infrared Multiphoton Dissociation of RDX in a Molecular Beam, J. Chem. Phys., 1988, 88, 801-810.
  • [13] Rauch F.C., Fanelli A.J., The Thermal Decomposition Kinetics of Hexahydro-1,3,5-trinitro-s-triazine above the Melting Point: Evidence for Both a Gas and Liquid Phase Decomposition, J. Phys. Chem., 1969, 73, 1604-1608.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT1-0035-0059
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.