PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

High Energy Density Materials (HEDM): Overview, Theory and Synthetic Efforts at FOI

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
9th Int. Seminar " New Trends in Research of Energetic Materials" University of Padubice, April 2006
Języki publikacji
EN
Abstrakty
EN
This paper presents a literature overview of HEDM. A number of potential HEDMs with performances theoretically up to more than 10 times HMX have been identified, ranging from ionic all-nitrogen compounds like N5 - and N5 + with suitable counter ions (N5 +N5 - gives a performance of ~1.6 times HMX) to polymeric nitrogen (10 times HMX) and metallic hydrogen. In between there are for example metastable nitrogen "clusters" (Nx, x𕛔 to 60). Calculations show that N4 has approximately 3.2 times the performance of HMX. Both metallic hydrogen and polymeric nitrogen are high-pressure compounds (several Mbar) and thus probably hard to synthesize in larger amounts. The nitrogen clusters offer an interesting alternative or complement in that they are all "normal" chemical compounds and they all have high heat of explosion, and probably also high density (2.0-2.7 g/cm3). This overview covers conventional chemistry, novel chemistry (all-nitrogen compounds, new oxidizers in the form of NxOy compounds) and exotic physics (eg. metallic hydrogen, cold fusion and anti-matter). The time in which these concepts can be realised ranges from near future to many years ahead and some may possibly never be made at all or perhaps only in lab scale. The overview is complemented with theoretical and experimental results from our institute in our effort to synthesize new all nitrogen compounds, e.g. pentazolate ion (N5 -) and tetraazatetrahedrane (N4(Td)).
Słowa kluczowe
Rocznik
Strony
83--108
Opis fizyczny
Bibliogr. 56 poz.
Twórcy
autor
autor
autor
  • Department of Energetic Materials FOI, Swedish Defence Research Agency Grindsjön Research Centre, 147 25 Tumba, Sweden, henric.oestmarc@telia.com
Bibliografia
  • [1] Wallin S., Ostmark H., Wingborg N. et al., High Energy Density Materials (HEDM) - A Literature Survey, Swedish Defence Research Agency, Stockholm 2004.
  • [2] Freche A., Aviles J., Donnio L., Spyckerelle C., Insensitive RDX, I-RDX, Paper presented at the Insensitive Munitions and Energetic Materials Technology Symposium, San Antonio 2000,
  • [3] Freche A., Lecume S., Spyckerelle C., Aviles J. & Donnio L., Insensitive Nitramines, Paper presented at the Europyro 8e Congres International de Pyrotechnic, Saint-Malo 2003.
  • [4] Eaton, Zhang M.-X., Gilardi R. et al., Octanitrocubane: A New Nitrocarbon, Propellants, Explos., Pymtech., 2002, 27, 1-6.
  • [5] Vedachalam M., Ramakrishnan V. T., Boyer J. H. et al., Facile Synthesis and Nitration of cis-syn-cis-2,6-dioxo-1,3,4,5,7,8-hexanitrodekahydro-lH,5H-diimidazo[4,5'b:4\5'-e]pyrazin,.7, Org. Chem., 1991, 5tf, 3413-3419.
  • [6J Pagoria P. R, Lee G. S,, Mitchell A. R., Schmidt R. D., ThermochimicaActa, 2002, 384, 187-204.
  • [7] Christe K. O., Wilson W. W., Sheehy J. A., Boatz J. A., N/: A Novel Homoleptic Polynitrogen Ion as a High Energy Density Material, Angewandte Chemie Int. Ed, 1999, 38, 2004-2009.
  • [8] Ostmark H., Wai)in S., Brinck T. eta]., Detection of Pentazolate Anion (cyclo-Nj'} from Laser lonization and Decomposition of Solid p-dimethylaminophenylpentazole, Chem. Phys. Lett., 2003, 379, 539-546.
  • [9] Hahma A., Holmberg E., Hore N. et al. Synthesis and Characterization of Phenylpentazoles, Paper presented at the 3 3rd International Annual Conference offCT, Karlsruhe, 2002.
  • [10] Vij A,, Pavlovich J. G., Wilson W., Vij V., Christe K. O., Experimental Detection of the Pentaazacyclopentadienide (Pentazolate) Anion, cyclo-N;", Angewandte Chemie Int. Ed., 2002, 41, 3051-3053.
  • [11] Butler R. N., Stephens J. C., Burke L. A., First Generation of Pentazole (HN5, Pentazolic Acid), the Final Azole, and a Zinc Pentazolale Salt in Solution: A New N-dearylation of I -(p-methoxyphenyl) pyrazoles, a 2-(p-methoxyphenyl) tetrazole and Application of the Methodology to 1-(p-methoxyphenyl) pentazole, Chem. Commun., 2003, 1016-1017.
  • [12] SchroerT., Haiges R., Schneider S., Christe, K. 0., The Race for the First Generation of the Pentazolate Anion in Solution Is far from over, ibid., 2005, 1607-1609.
  • [13] Nguyen M. T., Polynitrogen Compounds 1. Structure and Stability of N4 and Nj Systems, Coordination Chemistry Reviews, 2003, 244, 93-113.
  • [14] Bartlett R. J. et al., Structure and Stability of Polynitrogen Molecules and Their Spectroscopic Characteristics, http://www.qtp.ufl.edu/-bartlett/pdf/polynitrogen.pdf.
  • [15] Glukhovtsev M. N., Jiao H., Schleyer P. V. R., Besides N2, What Is the Most Stable Molecule Composed Only of Nitrogen Atoms?, Inorg. Chem., 1996, 35, 7124-7133.
  • [16] Murray J. S., Lane P., Brinck T. et ah, Relationships of Critical Constants and Boiling Points to Computed Molecular Surface Properties, J. Phys. Chem., 1993, 97,9369-9373.
  • [17] KarleJ., A Discussion of Azacubane and Some Peripheral Remarks about Other N8 Compounds, Paper presented at the HEDM contractors meeting, Park City, Utah 2000.
  • [18] Francl M. M., Chesick J. P., TheN4 Molecule and Its Metastability,./ Phys. Chem., 1990, 94, 526-528.
  • [19] Lee T. J., Martin J. M. L., An Accurate Quartic Force Field, Fundamental Frequencies, and Binding Energy for the High Energy Density Material TdN4, Chem. Phys. Lett., 2002, 357, 319.
  • [20] Yarkony D. R., Theoretical Studies of Spin-Forbidden Radiationless Decay in Polyatomic Systems: Insights from Recently Developed Computational Methods, J. Am. Chem. Soc., 1992,114, 5406-5411.
  • [21] Brinck T., Bittererova M.n Ostmark H., Electronic Structure Calculations as a Tool in the Quest for Experimental Verification of N4, in: (Politzer P. A. & Murray J. S. Eds.), Energetic Materials, Part 1: Decomposition, Crystal and Molecular Properties, Elsevier, 2003, pp. 421-439.
  • [22] Zheng J. P., Waluk J., Spangel-Larsen J., Blake D. M., Radziszewski J. G., Tetrazete (N4). Can It Be Prepared and Observed?, Chem., Phys. Lett., 2000, 328, 227-233.
  • [23] Cacace F., From N2 and O2 to N4 and 04: Pneumatic Chemistry in the 21 st Century, Chemistry - A European Journal, 2002, 8, 3838-3847.
  • [24] Cacace F., Petris G. D., Troiani A., Experimental Detection of Tetranitrogen, Science, 2002, 295, 480-481.
  • [25] Nguyen M.T., Nguyen T. L.,MebelA. M., FlammangR.,Azido-Nitrene is Probably the N4 Molecule Observed in Mass Spectrometric Experiments, J. Phys. Chem. A, 2003,707,5452-5460.
  • [26] Bittererova M., Brinck T., Ostmark H., Theoretical Study of the Triplet N4 Potential Energy Surface, ibid, 2000, 104, 11999-12005.
  • [27] Scullman R., Wallin S., Laubersheimer F., Rehm O., Luminescence from Matrices of Nitrogen and Argon Excited by a-Particles, Physica Scripta, 1995, 52, 172-177.
  • [28] Bittererova M., Ostmark H., Brinck, T., A Theoretical Study of the Azide(N3) Doublet States. A New Route to Tetraazatetrahedrane (N4); N+N;r>N4, J. Chem. Phys.,2QQ2, 116,9740.
  • [29] Hansen N. Wodtke A. M., Velocity Map Ion Imaging of Chlorine AzJde Photolysis: Evidence for Photolytic Production of Cyclic-N3, J. Phys. Chem. A, 2003, 107, 10608-10614.
  • [30] Maier G.,Pfriem S., Schafer U., Matusch R., AngewandteChemie, Int. Ed., England, 1978, 77,520.
  • [31] Ostmark H., Launila O., Wallin S., Tryman R., On the Possibility of Detecting Tetraazatcrahedrane (N4) in Liquid or Solid Nitrogen by Fourier Transform Raman Spectroscopy, J. Raman Spectr., 2001, 32, 195-199.
  • [32] Ostmark H., Bittererov, M, Brinck, T. et al., The N4 project. Annual report for the year 2001, Swedish Defence Research Agency 2002, pp. 69
  • [33] Ostmark H., Wallin S., Hore N., Launila O., Raman Spectra of P4 at Low Temperatures, J. Chew. Phys., 2003, 7/9,5918-5922.
  • [34] Bittererova M., Brinck T., Ostmark H., Theoretecal Study of the Singlet Electronically Excited States of N4, Chem. Phys. Lett., 2001, 340, 597-603.
  • [35] Bittererova M., Ostmark H., Brinck, T., Ab initio Study of the Ground State and the First Excited State of the Rectangular (D2h) N4 Molecule, ibid., 2001, 347, 220-228.
  • [36] Hantzsch A., Ber. d. Chem. Ges., 1903, 36, 2056.
  • [37] Huisgen R. Ugi I., Zur Losung eines klassischen Problems der organischen Stickstoff-Chemie, Angewandte Chemie, 1956, 68, 705-706.
  • [38] Nguyen M. T., McGinn M. A., Hegarty A. F., Elguero J., Can the Pentazole Anion (Ns~) be Isolated and/or Trapped in Metal Complexes, Polyhedron, 1985, 4, 1721-1726.
  • [39] Glukhovtsev M. N., Schleyer, P. v. R. Maerker, C., Pentaaza- and Pentaphosphacyclopentadienide Anions and Their Lithium and Sodium Derivatives: Structures and Stabilities,.J. Phys. Chem., 1993, 97, 8200-8206.
  • [40] Burke L. A., Butler R. N., Stephens J. C., Theoretical Characterization of Pentazole Anion with Metal Counter Ions. Calculated and experimetnal I5N shifts of Aryldiazonium, -Azide and -Pentazole Systems, J. Chem. Soc., Faraday Transactions, 2001, 2, 1679-1684.
  • [41] Lein M., Frunzke J., Timoshkin A. Frenking G., Iron Bispentazole Fe(η5-N5)2, a Theoretically Predicted High-Energy Compound: Structure, Bonding Analysis, Metal - Ligand Bond Strength and a Comparison with the Isoelectronic Ferrocene, Chemistry - A European Journal, 2001, 7,4155-4163.
  • [42] Straka M., Pyykko P., One Metal and Forty Nitrogens. Ab Initio Predictions for Possible New High-Energy Pentazohdes, Inorg. Chem., 2003, 42, 8241-8249.
  • [43] Tsipis A. C., Chaviara A. T., Structure, Energetics, and Bonding of First Row Transition Metal Pentazolato Complexes: A DFT Study, ibid., 2004, 43, 1273-1286.
  • [44] Carlqvist P., OstmarkH. Brinck T., Computational Study of the Amination of Halobenzenes and Phenylpentazole. A Viable Route to Isolate the Pentazolate Anion? J. Org. Chem., 2004, 69, 3222-3225.
  • [45] Ostmark H., Goede P., Wallin S. etal. Development of Energetic Materials over the Time Span 2004-2025, Special Forecast, Stockholm, Swedish Defence Research Agency, FOI, 2004.
  • [46] Fau S., Wilson K. J., Bartlett R. J., On the Stability of N5'N5% J. Phys. Chem.,2QQ2, 106, 4639-4644.
  • [47] Fau S., Wilson K. J., Bartlett R. J., Correction: on the Stability of N5W, ibid., 2004,108,236.
  • [48] Evangelisti S., LemingerT., Ionic Nitrogen Clusters,/. Molec. Struct. (Theochem), 2003,627,43-50,
  • [49] Bemm U., Ostmark H., Structure of l,l-diamino-2,2-dinitroethylene: A novel Energetic Material with Infinite Layers in Two Dimensions, Acta Crystalography, 1998, C54, 1997-1999.
  • [50] Dixon D. A., Feller D., Christe K. O. et al., Enthalpies of Formation of Gas-Phase N3,N3-,N5+, and N5- from Ab Initio Molecular Orbital Theory, Stability Predictions for N5+N3- and N5+N5-, and Experimental Evidence for the Instability of N5+N3-, J. Am, Chem. Soc., 2004,126, 834-843.
  • [51] Gagliardi L., Orlandi G., Evangelisti S., Roos B. O., A theoretical study of the nitrogen clusters formed from the ions N3-,N5+ and N5-,7. Chem. Phys.. 2001,114, 10733-10737.
  • [52] Mailhiot C.,Yang L. H., McMahan A. K., Polymeric Nitrogen, Physical Review B, 1992,4(5, 14419-14435.
  • [53] Eremets M. I., Hemley R. J., Mao H.-K., Gregoryanz E., Semiconducting non-molecular nitrogen up to 240 GPa and its low-pressure stability, Nature, 2001, 411, 170-174.
  • [54] McMahan A., Lorenzana H. E., Polymeric Nitrogen: A potential Compound to Store Energy, Energy & Technology Review, LLNL periodical, 1994, pp. 10-11.
  • [55] Eremets M. I. et al. Single-bonded Cubic Form of Nitrogen, Nature Materials, 2004, 5, 558-562.
  • [56] Barbee III.T. W., Metastability of Atomic Phases of Nitrogen, Physical Review B, 1993,45,9327-9330.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT1-0035-0040
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.