PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modification of the Surface of the Iron Powder as an Ingredient of the High Calorific Mixture

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Textural properties of iron powders obtained by reduction of iron(II) compounds and by electrolysis were determined. Their specific surfaces were 0.38 and 0.43 m2g-1 respectively, and the prevailing grain sizes amounted to 10 and 43 ?m respectively. Total content of the determined metallic impurities was 0.055 wt.% in the preparation obtained by the electrolysis while in the preparation obtained by reduction it was 0.025 wt.%. It was proved that in initial samples the α-Fe2O3 phase occurred in the outer oxide layer present on the surface of Fe grains, and below this phase a layer of magnetite was found, the thickness of which was considerably greater in iron obtained by electrolysis. Measurements of selected properties showed that modification of the iron powder surface carried out by reduction with dihydrogen led to decreasing the linear rate of burning of the high calorific mixture Fe/KClO4 but it did not affect its calorific value. Moreover, it was found that modification of the iron powder surface resulted in lowering the temperature of ignition of the analysed mixture and decreasing the quantity of the released oxygen generated by decomposition of the oxidant, which did not react with the iron powder.
Rocznik
Strony
87--102
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
autor
autor
Bibliografia
  • [1] Klasons V., Lamb Ch.M., Thermal Batteries, Chapter 21 in: Handbook of Batteries (David Linden, Thomas B. Reddy, Eds.) Mc Graw-Hill, New York, Chicago 2002.
  • [2] Guidotti R.A., Development history of Fe/KClO4 heat powders at Sandia and related aging issues for thermal batteries, Sandia National Laboratories Report SAND2001-2191, July 2001.
  • [3] Gay D., Sanderow H., Advances in Powder Metallurgy and Particulate Materials, Vol. 6, Metal Powder Industries Federation, Material Park, 1996.
  • [4] ASM Handbook, Powder Metal Technologies and Applications, Vol. 7, The Material Information Society, Material Park, 1998.
  • [5] Patent USA 2538990 1951.
  • [6] Patent USA 4134800 1979.
  • [7] Czajka B., Lipińska K., Lipiński M., Wachowski L., Witkowski W., Characterization of High Calorific Fe-KClO4 Mixture, Proc. 11th Seminar New Trends in Research of Energetic Materials, Part I, Pardubice 2008, 122-127.
  • [8] Pai Verneker V.R., Rajeshawar K., Thermal Secomposition of Alkali Metal Perchlorates, Thermochim. Acta, 1975, 13, 293-304.
  • [9] Gałecki J., Preparatyka Nieorganiczna, WNT, Warszawa 1964.
  • [10] Czajka B., Wachowski L., Tabat S., Wpływ preparatyki chloranu(VII) potasu na jego właściwości fizykochemiczne, XLVI Scientific Conference of Polish Chemical Society and SITPChem., Book of Abstracts, Lublin 2003, Tom I, 314.
  • [11] Czajka B., Wachowski L., Łapiński A., Zieliński M., Oxides Layer Study onto Fine-Grained Iron Powders, Proc. 11th Seminar New Trends in Research of Energetic Materials, Part II, Pardubice 2008, 485-493.
  • [12] Wachowski L., Czajka B., Textural and Catalytic Properties of the FexOy/Fe-KClO4 System, Thermochim. Acta, 2005, 435, 102-107.
  • [13] Czajka B., Wachowski L., Zieliński M., Some Properties of the Iron Powders Applied in High Energetic Materials, Oxidation Comm., 2007, 30, 153-164.
  • [14] Roszkiewicz T., Wachowski L., Witkowski W., Apparatus for measurement of burning rate of pyrotechnic mixture emitting low energetic radiation, 5th International Conference IPOEX 2008 Explosives Research-Application-Safety, Ustroń-Jaszowiec, 2008 Book of Abstracts, p. 31.
  • [15] Tiernan M.J., Barnes P.A., Parkers G.M.B., Reduction of iron oxide catalysts: The investigation of kinetic parameters using rate perturbation and linear heating thermoanalytical techniques, J. Phys. Chem. B, 2001, 105, 220-228.
  • [16] Hurst N.W., Gentry S.J., Jones A., McNicol B.D., Temperature Programmed Reduction, Catal. Rev.-Sci. Eng., 1982, 24, 233-309.
  • [17] Wielant J., Goossens V., Hausbrand R., Terryn H., Electronic properties of thermally thin iron films, Electrochim. Acta, 2007, 52, 7617-7625.
  • [18] de Faria D.L.A., Venâncio Silva S., de Oliveira M.T., Raman microspectroscopy of some iron oxides and hydroxides, J. Raman Spectroscopy, 1997, 28, 873-878.
  • [19] Ohtsuka T., Kubo K., Sato N., Raman specrtoscopy of thin corrosion films on iron at 100 to 150 C in air, Corrosion, 1986, 42, 476-481.
  • [20] Beattie I.R., Gilson T.R., The single-crystal Raman spectra of nearly opaque materials, iron(III) oxide and chromium(III) oxide, J. Chem. Soc. A., 1970, 980-986.
  • [21] Porto S.P.S., Krishnan R.S., Raman effect on corundum, J. Chem. Phys., 1967, 47, 1009-1012.
  • [22] Samuelsen E., Spin waves in antiferromagnets with corundum structure, Physica, 1969, 43, 353-374.
  • [23] Goto Y., The effect of squeezing on the phase transformation and magnetic properties of γ-Fe2O3, Jpn. J. Appl. Phys., 1964, 3, 739-744.
  • [24] Tompkins H.G., Irene E.A, Handbook of Ellipsometry, William Andrew Publishing, Norwich NY, 2005.
  • [25] Tompkins H.G., A User’s Guide to Ellipsometry, Mineola, N.Y., 2006.
  • [26] Goossens V., Wielant J., Van Gils S., Finsy R., Terryn H., Optical properties of thin iron oxide films on steel, Surface and Interface Anal., 2006, 38, 489-493.
  • [27] Cornell R.M., Schwertmann U., The Iron Oxides, Wiley-VCH, Weinheim 2003.
  • [28] Leciejewski Z.K., Experimental Study of Possibilities for Employment of Linear Form of Burning Rate Law to Characterise the Burning Process of Fine-Grained Propellants, Central European Journal of Energetic Materials, 2008, 5(1), 45-61.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT1-0035-0033
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.