PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Pyrotechnic Countermeasures: V. Performance of Spectral Flare Compositions Based on Aromatic Compounds

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The radiometric performance and burn rate of four spectral fare compositions (R-X) based on 1,4-dicyanobenzene (1), 3,5-dinitrobenzonitrile (2), E-stilbene (3) and 9,10-dihydroanthracene (4), potassium perchlorate and polyacrylate binder are described. The burn rates, spectral effciencies, Eλ, in both α- and β-band have been determined. The composition R-4 displays the highest effciency in both α- and β-band as well as lowest color ratio, θ B/A. R-1 yields the highest color ratio and second highest spectral effciency in β-band. For part IV see Ref. [1].
Rocznik
Strony
55--63
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
autor
  • NATO Munitions Safety Information Analysis Center (MSIAC), Boulevard Leopold III, B-1100 Brussels, Belgium, e-c.koch@msiac.nato.int
Bibliografia
  • [1] Koch E.-C., Pyrotechnic Countermeasures. IV: Radiometric Performance of a Sulphur-based Flare Composition, Propellants, Explos., Pyrotech., 2008, 33, 333.
  • [2] Koch E.-C., Review on Pyrotechnic Aerial Infrared Decoys, Propellants, Explos., Pyrotech., 2001, 26, 3.
  • [3] Koch E.-C., Pyrotechnic Countermeasures: II. Advanced Aerial Infrared Countermeasures, Propellants, Explos., Pyrotech., 2006, 31, 3.
  • [4] Koch E.-C., 2006-2008 Annual Review on Aerial Infrared Decoy Flares, Propellants, Explos., Pyrotech., DOI prep.200700219 - in press.
  • [5] Koch E.-C., Pyrotechnic Countermeasures. III: The Influence of Oxygen Balance of an Aromatic Fuel on the Colour Ratio of Spectral Flare Compositions, Propellants, Explos., Pyrotech., 2007, 32, 365.
  • [6] Moss T.S., Brown D.R., Hawkins T.D.F., Infra-Red Decoys, Technical Note RAD.702, Royal Aircraft Establishment, September 1957, declassified on March 14, 2001.
  • [7] Zhang L., Zhang L., Li Y., Liu B., Wang J., Study of Combustion Properties of a Solid Propellant by Highly Time-Resolved Passive FTIR, Propellants, Explos., Pyrotech., 2006, 31, 410.
  • [8] Koch E.-C., unpublished work.
  • [9] Hussain G., Rees G.J., Combustion of Black Powder. Part II: FTIR Emission Spectroscopic Studies, Propellants, Explos., Pyrotech., 1991, 16, 6.
  • [10] Weiser V., Blanc A., Deimling L., Eckl W., Eisenreich N., Kelzenberg S., Neutz J., Roth E., Pyroorganic Flares – A New Approach for Aircraft Protection, Europyro 2007 – 34th International Pyrotechnics Seminar, Beaune, France, October 8-11, 2007, p. 785.
  • [11] Roth E., Weiser V., Deimling L., Blanc A., Kelzenberg S., Neutz J., Eckl W., Eisenreich N., Spektrlaverhalten neuer pyro-organischer Täuschkörper, Treib- und Explosivstoff Workshop, 27-28. November 2007, Karlsruhe.
  • [12] Ase P., Snelson A., Controlled Infrared Output Flares for IRCM Applications, 22nd International Pyrotechnics Seminar, 15-19 July 1996, Fort Collins, USA, p. 711.
  • [13] Webb R., van Rooijen M., Using Theoretical IR Emission Model to Investigated the Trends in Theoretical Color Ratios for IR Decoy Flare Applications, 31st International Pyrotechnics Seminar, Fort Collins, CO, July 10-16, 2004, 575.
  • [14] Nielson D.B., Lester D.M., Blackbody Decoy Flare Compositions for Thrusted Applications and Methods of Use, U.S. Patent 5 834 680, 1998, Cordant Technologies Inc., USA.
  • [15] ICT Database of Thermochemical Values, Fraunhofer-ICT, Pfinztal, Germany Version 7.0, 2004.
  • [16] Ebeoglu D.B., Martin C.W., Effect of Mixture ratio on UV, Visible and Infrared radiation from Exhaust Plumes, AFATL-TR-75-79, Air Force Armament Laboratory, May 1975.
  • [17] Posson P., Baggett J.P., US Patent 6 427 599, 2002, Pyrotechnic Compositon, BAE Systems Integrated Defense Solutions Inc. USA.
  • [18] Koch E.-C., DE 10 2004 043 991 A1, 2004, Infrarot Leuchtmasse, Diehl BGT Defence, Deutschland.
  • [19] Koch E.-C., Experimental Advanced Infrared Flare Compositions, 33rd International Pyrotechnics Seminar, Fort Collins, CO, July 16-12, 2006, 71.
  • [20] Ammon H.L., Updated Atom/Functional group and Atom-Code Volume Additivity Parameters for the Calculation of the Crystal Densities of Single Molecules, Organic Salts, and Multi-Fragment Materials Containing H, C, B, N, O, F, S, P, Ce, Br and I, Propellants, Explos., Pyrotech., 2008, 33, 92.
  • [21] Gordon S., McBride B.J., Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications I. Analysis, Report NASA RP-1311, NASA Lewis Research Center, Cleveland Ohio, 1994.
  • [22] Böhm H., Braun-Unkhoff M., Numerical Study of the Effect of Oxygenated Blending Compounds on Soot Formation in Shock Tubes, Combust. Flame, 2008, 153, 84.
  • [23] LaRocca A.J., Artificial Sources, in: Accetta J. S., Shumaker D. L., Eds. The Infrared and Electro-Optical Systems Handbook, Volume 1 Sources of Radiation, Goerge J. Zissis (Ed.), SPIE Optical Engineering Press, Bellinham, 2nd revised Printing, 1996, p.113.
  • [24] http://www.chemringcm.com/PageText_files//58607-0mm_Flare_Cartridge.pdf
  • [25] Davies N., Holley D.A., Factors Affecting the Radiometric Output of Infrared Flares, 22nd International Pyrotechnics Seminar, 15-19 July 1996, Fort Collins, USA, p. 469.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT1-0035-0030
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.