PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Role of Thermochemical Decomposition in Energetic Material Initiation Sensitivity and Explosive Performance

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Catastrophic initiation of an energetic material consists of a complex, interactive, sequential train of mechanistic mechanical, physical, and chemical processes which occur over a finite time period and proceed from macroscopic into sub-microscopic composition levels (bulk > crystalline > molecular > atomic). Initiation results when these processes proceed at a rate which generates sufficient energy (heat) to reach a threshold stage within this finite time period. Thus, the rate at which these mechanistic processes occur defines initiation sensitivity and affects performance. Thermochemical decomposition processes regulate the rate at which heat energy is released at the molecular level, and therefore to some extent, control energetic material initiation sensitivity and performance characteristics. Kinetic deuterium isotope effect (KDIE) data, obtained during the ambient pressure thermochemical decomposition process, identifies the mechanistic rate-controlling bond rupture which ultimately regulates the energy release rate of a given energetic material. This same rate-controlling bond rupture also appears as a significant rate-limiting feature in higher order deflagration, combustion, and explosion phenomena. The effect the KDIE-determined rate-controlling bond rupture exerts on initiation sensitivity, and its potential influence in combustion and explosion performance is delineated.
Rocznik
Strony
75--101
Opis fizyczny
Bibliogr. 50 poz.
Twórcy
Bibliografia
  • [1] Shackelford S.A., A General Concept Concerning Energetic Material Sensitivity and Initiation, J. de Physique. IV, Colloque C4, Suppl. to J. de Phys. III, 1995, 5, C4-485 to C4-499. Portions of ref. [1] previously were presented at the following conferences: (a) Workshop on Macroscopic and Microscopic Approaches to Detonation, San Malo, France, 2-7 Oct 1994, (b) Eighteenth International Pyrotechnics Seminar, Breckenridge, CO (USA), 13-18 Jul 1992; (c) Workshop on Desensitization of Explosives and Propellants, Rijswijk, The Netherlands, 11-13 Nov 1991.
  • [2] Shackelford S.A., Mechanistic Investigations of Condensed Phase Energetic Material Decomposition Processes using the Kinetic Deuterium Isotope Effect, in: S. N. Bulusu (Ed.), Chemistry and Physics of Energetic Materials: Proceedings of the NATO Advanced Study Institute, Vol. 309, Kluwer Academic Publishers, Dordrecht, NL, 1990, pp. 413-432 (Chapter 18), and references therein.
  • [3] Shackelford S.A., Mechanistic Relationships of the Decomposition Process to Combustion and Explosion Events from Kinetic Deuterium Isotope Effect Investigations, ibid., pp 433-456 (Chapter 19), and references therein.
  • [4] Field J.E., Hot Spot Ignition Mechanisms for Explosives, Acc. Chem. Res., 1992, 25, 489-496.
  • [5] Bowden F.P., Yoffe A.D., Initiation and Growth of Explosives in Liquids and Solids, Cambridge University Press: Cambridge, 1958, reprinted 1989, in ref. [2].
  • [6] Coffey C.S., Sharma S., Lattice Softening and Failure in Severely Deformed Molecular Crystals, J. Appl. Phys., 2001, 89, 4797-4802.
  • [7] Sharma S., Hoover S.M., Coffey C.S., Tompa A.S., Sandusky H.W., Armstrong R.W., Elban W.L., Structure of Crystal Defects in Damaged RDX as Revealed by an AFM, in: Schmidt, Dandekar, & Forbes (Eds.), Shock Waves in Condensed Phase Matter-1997; The American Institute of Physics, 1998, pp. 563-566.
  • [8] Armstrong R.W., Dislocation Mechanisms for Shock-Induced Hot Spots, J. de Physique IV, Colloque C4, Suppl. to J. de Phys. III, 1995, 5, C4-89 to C4-102, and references therein.
  • [9] (a) Zeman S., Krupka M., New Aspects of Impact Reactivity of Polynitro Compounds, Part III. Impact Sensitivity as a Function of the Intermolecular Interactions, Propellants, Explos., Pyrotech., 2003, 28, 301-307, and references therein.
  • [10] Lecume S., Boutry C., Spyckerelle C., Structure of Nitramines Crystal Defects Relation with Shock Sensitivity, 35th International Conference of ICT, Karlsruhe, FRG, 29 Jun-2 Jul 2004, pp. 2-1 to 2-14. For completeness, it is noted that ref. [10] discusses the existence of internal (crystal interior) and external (crystal surface and edges) defects in an energetic material crystal lattice and reveals that external defects more readily affect initiation sensitivity.
  • [11] Walker F.E., A New Kinetics and the Simplicity of Detonation, J. de Physique. IV, Colloque C4, Suppl. to J. de Phys. III, 1995, 5, C4-309 to C4-333.
  • [12] Dick J.J., Orientation-Dependent Explosion Sensitivity of Solid Nitromethane, J. Phys. Chem., 1993, 97, 6193-6196.
  • [13] Odiot S., Fundamental Physics and Chemistry Behind Molecular Crystal Detonations at the Microscopic Level, in: S. N. Bulusu (Ed.), Chemistry and Physics of Energetic Materials; Proceedings of the NATO Advanced Study Institute, Vol. 309, Kluwer Academic Publishers: Dordrecht, NL, 1990, pp. 79-130, (Chapter 5).
  • [14] (a) Dick J.J., Mulford R.N., Spencer W.J., Pettit D.R., Garcia E., Shaw D.C., Shock Response of Pentaerythritol Tetranitrate Single Crystals, J. Appl. Phys., 1991, 70, 3572-3587; and, (b) Dick, J. J., Orientation Dependence of the Shock Initiation Sensitivity of PETN: A Steric Hindrance Model, Workshop on Desensitization of Explosives and Propellants, Rijswijk, The Netherlands, 11-13 Nov 1991.
  • [15] Piermarini G.J., Block S., Miller P.J., Effects of Pressure on the Thermal Decomposition Kinetics and Chemical Reactivity of Nitromethane, J. Phys. Chem., 1989, 93, 457-462.
  • [16] Samirant M., Detonation des Monocristaux. Analyse Experimentale Limites, J. de Physique (Colloque C4), 1987, 48, 85-98.
  • [17] Zeman S., New Aspects of the Impact Reactivity of Nitramines, Propellants, Explos., Pyrotech., 2000, 25, 66-74.
  • [18] Dremin A.N., Klimenko V.Yu., Davidova O.N., Zoludeva T.A., Proc. of the Ninth Symposium (International) on Detonation, 28 Aug – 1 Sep 1989, Portland, OR (USA), in reference [19].
  • [19] Sharma J., Chemistry of Energetic Materials Under Shock Caused Via Electronic Excitations, in: S.C. Schmidt, R.D. Dick, J.W. Forbes, D.G. Tasker (Eds.), Shock Compression of Condensed Phase Matter-1991, Elsevier Science Publishers, 1998, pp. 639-645.
  • [20] Zeman S., New Aspects of Impact Reactivity of Polynitro Compounds, Part IV. Allocation of Polynitro Compounds on the Basis of their Impact Sensitivities, Propellants, Explos., Pyrotech., 2003, 28, 308-313.
  • [21] Brill T.B., Patil D.G., Duterque J., Lengelle G., Thermal Decomposition of Energetic Materials 63. Surface Reaction Zone Chemistry of Simulated Burning 1,3,5,5-Tetranitrohexahydropyrimidine (DNNC or TNDA) Compared to RDX, Combust. Flame, 1993, 95, 183-190.
  • [22] Hendrickson S.A., Shackelford S.A., Solid State Thermochemical Decomposition of Neat 1,3,5,5-Tetranitrohexahydropyrimidine (DNNC) and its DNNC-d6 Perdeuterio-Labeled Analogue, Thermochim. Acta, 2006, 440, 146-155.
  • [23] (a) Shackelford S. A., Menapace J. A., Goldman J. F. , Liquid State Thermochemical Decomposition of Neat 1,3,5,5-Tetranitrohexahydropyrimidine (DNNC) and Its DNNC-d2, DNNC-d4, DNNC-d6 Structural Isotopomers: Mechanistic Entrance into the DNNC Molecule, Thermochim. Acta, 2007, 464, 42-58; and, (b) Shackelford S. A., Menapace J. A., Goldman, J. F., Hendrickson S. A., Solid State Versus Liquid State Thermochemical Decomposition Comparison of 1,3,5,5- Tetranitrohexahydropyrimidine (DNNC) and DNNC-d6: Role of Chemical Structure Revisited, 35th International Conference of ICT, Karlsruhe, FRG, June 29 to July 2, 2004, pp. 43-1 to 43-15.
  • [24] Shackelford S.A., Goshgarian B.B., Chapman R.D., Askins R.E., Flanigan D.A., Rogers R.N., Deuterium Isotope Effects During HMX Combustion: Chemical Kinetic Burn Rate Control Mechanism Verified, Propellants, Explos., Pyrotech., 1989, 14, 93-102.
  • [25] Lee J., Combustion and Turbulence I., NATO Advanced Study Institute on Chemical Reaction Dynamics, Iraklion (Crete), Greece, 25 Aug – 7 Sep 1985.
  • [26] Oran E.S., Kailasanath K., Guirguis R.H., The Structure of Detonation Waves, J. de Physique (Colloque C4), 1987, 48, 105-117.
  • [27] Dupre G., Cinetique Chimique et Detonation, J. de Physique (Colloque C4), 1987, 48, 397-403.
  • [28] McGuire R.R., Ornellas D.I., Askt I.B., Detonation Chemistry: Diffusion Control in Non-Ideal Explosives, Propellants and Explos., 1979, 4, 23-26.
  • [29] Shackelford S.A., Coolidge M.B., Goshgarian B.B., Loving B.B., Rogers R.N., Janney J.L., Ebinger M.H., Deuterium Isotope Effects in Condensed-Phase Thermochemical Decomposition Reactions of Octahydro-1,3,5,7-tetranitro-1,3,5,7- tetrazocine, J. Phys. Chem., 1985, 89, 3118-3126, and references therein.
  • [30] Shackelford S.A., Beckmann J.W., Wilkes J.S., Deuterium Isotope Effects in the Thermochemical Decomposition of Liquid 2,4,6-Trinitrotolulene: Application to Mechanistic Studies Using Isothermal Differential Scanning Calorimetry Analysis, J. Org. Chem., 1977, 42, 4201-4206.
  • [31] Shackelford S.A., Rodgers S.L., Askins R.E., Deuterium Isotope Effects During RDX Combustion: Mechanistic Burn Rate-Controlling Step Determination, Propellants, Explos., Pyrotech., 1991, 16, 279-286.
  • [32] Rodgers R.N., Janney J.L., Ebinger M.H., Kinetic Isotope Effects in Thermal Explosions, Thermochim. Acta, 1982, 59, 287-298.
  • [33] Bulusu S., Autera J.R., Initiation Mechanism of TNT: Deuterium Isotope Effect as an Experimental Probe, J. Energetic Mater., 1983, 1, 133-140.
  • [34] Bulusu S., Weinstein D.I., Autera J.R., Velicky R.W., Deuterium Kinetic Isotope Effect in the Thermal Decomposition of 1,3,5-Trinitro-1,3,5-triazacyclohexane and 1,3,5,7-Tetranitro-1,3,5,7-tetraazacyclooctane: Its Use as an Experimental Probe for their Shock-Induced Chemistry, J. Phys. Chem., 1986, 90, 4121-4126.
  • [35] Brill T.B., James K.J., Thermal Decomposition of Energetic Materials. 62. Reconciliation of the Kinetics and Mechanisms of TNT on the Time Scale from Microseconds to Hours, J. Phys. Chem., 1993, 97, 8759-8763.
  • [36] Makismov Y.Y., Sopranovich V.F., Ployakova N.V., Tr. Inst.-Mosk. Khim.-Tekhnol. Inst. im. D. I. Mendeleeva, 1974, 83, 51, in reference [35].
  • [37] Robertson A.J.B., The Decomposition, Boiling and Explosion of Trinitrotoluene at High Temperatures, Trans. Faraday Soc., 1948, 48, 977-983.
  • [38] Janney J.L., Rogers R.N., Experimental Thermochemistry Observations of Condensed-Phase Reactions, Proceed. 11th North American Thermal Analytical Society Conference, Vol. II, Oct 1982, pp 643-649.
  • [39] Rodgers S.L., Coolidge M.B., Lauderdale W.J., Shackelford S.A., Comparative Mechanistic Thermochemical Decomposition Analyses of Liquid Hexahydro-1,3,5-Trinitro-1,3,5-triazine (RDX) Using the Kinetic Deuterium Isotope Effect Approach, Thermochim. Acta, 1991, 177, 151-168.
  • [40] (a) Behrens R. Jr., Bulusu S., Thermal Decomposition of Energetic Materials. 2. Deuterium Isotope Effects and Isotopic Scrambling in Condensed-Phase Decomposition of Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine, J. Phys. Chem. 1991, 95, 5838-5845; and, (b) Behrens R. Jr., Bulusu S., Thermal Decomposition of Energetic Materials: Temporal Behaviors of the Rates of Formation of the Gaseous Pyrolysis Products from Condensed-Phase Decomposition of Octahydro-1,3,5,7- tetranitro-1,3,5,7-tetrazocine, J. Phys. Chem., 1990, 94, 6706-6718.
  • [41] (a) Behrens R. Jr., Bulusu S., Thermal Decomposition of Energetic Materials. 4. Deuterium Isotope Effects and Isotopic Scrambling (H/D, 13C/18O, 14N/15N) in Condensed-Phase Decomposition of 1,3,5-Trinitrohexahydro-striazine, J. Phys. Chem., 1992, 96, 8891-8897; and, (b) Behrens R. Jr., Bulusu S., Thermal Decomposition of Energetic Materials. 3. Temporal Behaviors of the Rates of Formation of the Gaseous Pyrolysis Products from Condensed-Phase Decomposition of 1,3,5-Trinitrohexahydro-s-triazine, J. Phys. Chem., 1992, 96, 8877-8891.
  • [42] Sharma J., Forbes J.W., Coffey C.S., Liddiard T.P., The Physical and Chemical Nature of Sensitization Centers Left from Hot Spots Caused in Triaminotrinitrobenzene by Shock or Impact, J. Phys. Chem., 1987, 91, 5139-5144.
  • [43] (a) Sharma J., Hoffsommer J.C., Glover D.J., Coffey C.S., Forbes J.W., Liddiard T.P., Elban W.L., Santiago F., Sub-Ignition Reactions at Molecular Levels in Explosives Subjected to Impact and Underwater Shock, Proceedings: Symposium (International) on Detonation, 8th, U.S. Government Printing Office, Washington D.C., MP 86-194, 1987, pp 725-733; and, (b) Hoffsommer J.C., Glover D.J., Elban W.L., Quantitative Evidence for Nitroso Compound Formation in Drop-Weight Impacted RDX Crystals, J. Energetic Mater., 1985, 3, 149-167.
  • [44] Sharma J., Forbes J.W., Coffey C.S., Liddiard J.P., The Nature of Reaction Sites and Sensitization Centers in TATB and TNT, in: S.C. Schmidt N.C. Holmes (Eds.), Shock Waves in Condensed Phase Matter, Elsevier Science Publishers, Amsterdam 1987, pp 565-568.
  • [45] Sharma J., Hoffsommer D.J., Glover D.J., Coffey C.S., Santiago F., Stolovy A., Yasuda S., Comparative Study of Molecular Fragmentation in Sub-Initiated TATB Caused by Impact, UV, Heat, and Electron Beams, in: Asay J.R., Graham R.A., Straub G.K. (Eds.) Shock Waves in Condensed Matter, Elsevier Science Publishers, Amsterdam 1983, pp 543-546.
  • [46] Rogers R.N., Combined Pyrolysis and Thin Layer Chromatography, Anal. Chem., 1967, 39, 730-733.
  • [47] Dacons J.C., Adolph H.G., Kamlet M.J., Some Novel Observations Concerning the Thermal Decomposition of 2,4,6-Trinitrotoluene, J. Phys. Chem., 1970, 74, 3035-3040.
  • [48] Varga R., Zeman S., Decomposition of Some Polynitro Arenes Initiated by Heat and Shock. Part I. 2,4,6-Trinitrotoluene, J. Hazard. Mater., 2006, 132, 165-170.
  • [49] Pfeil A., Eisenreich N., Krause H., Analysis of Intermediate and Final Products of an Explosive Reaction, J. de Physique (Colloque C4), 1987, 48, 209-221.
  • [50] A colleague pointed out that the momentum transfer of detonation products, Niven a fixed amount of energy, is less for heavier deuterated species (momentum control); and therefore, this momentum control also might explain the reduced detonation While this momentum effect might have some contribution to a reduced detonation velocity when an energetic material is deuterium labeled, when a KDIE operates (kinetic control), there is a decreased energy release rate, and a resultant total energy available to drive the initiating shock wave; therefore, a fixed amount of energy (same energy for both) cannot be a parametric condition when comparing the normal and deuterium labeled energetic material. Secondly, not all detonation products would contain deuterium atoms (i.e. CO, CO2, N2, etc.). Thirdly, the difference in flyer plate shock velocity to initiate TNT-α-d3/TNT, where product species momentum should not be a consideration, gives a 1.11 ratio [33]. The resultant detonation velocity in mm/μsec, containing he product species, gives a similar inversely related TNT/TNT-α-d3 ratio (6.431 /6.145 = 1.05) [33]. These similar values likely suggest that kinetic control is the major contributor to the reduced detonation velocity found.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT1-0034-0045
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.