PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Molecular Dynamics Study of Vibrational Nonequilibrium in Detonation of Polyatomic Liquids

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Energy transfer mechanisms to internal molecular degrees of freedom in shock and detonation waves in polyatomic liquids are investigated. The proposed approach uses a new version of the method of nonequilibrium molecular dynamics based on the simplest model potential energy surfaces of reacting polyatomic molecules. The main feature is adaptation of some results and approaches of gas theory to liquids. It is shown that vibrational nonequilibrium is produced by shock compression and influences on chemical reactions. So, the structure of shock and detonation waves depends strongly on the peculiarities of vibrational spectra and the structure of normal modes of compounds. Numerical simulations have been carried out for steady state detonation waves and processes of initiation of detonation by shock waves or by local heating. The results demonstrate different shock wave chemistry for substances of almost identical behaviour at static conditions.
Słowa kluczowe
Rocznik
Strony
63--74
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
  • Institute of Problems of Chemical Physics of Russian Academy of Sciences, IPCP RAS, Chernogolovka, Moscow region, 142432, Russia, asm@icp.ac.ru
Bibliografia
  • [1] Dremin A.N., Toward Detonation Theory, Springer, New York 1999.
  • [2] Dremin A.N., Babare L.V., The Shock Wave Chemistry of Organic Substances – AIP Conf. Proc. “Shock Waves in Condensed Matter - 1981” (Menlo Park) N.Y., 1982, pp. 27-41.
  • [3] Klimenko V.Y., Dremin A.N., Structure of Shock Wave Front in a Liquid, in: Manelis G.M. (Ed.), Detonation, Chernogolovka 1978, pp. 79-83.
  • [4] E lert M.L., Barrett J.J.C., Robertson D.H., White C.T., Molecular Dynamics Investigation of the Effects of Variation in Energy Release on Detonation Initiation, CP429 – Shock Compres. Condens. Matter, The American Inst. of Physics, 1997, pp. 293-296.
  • [5] R obertson D.H., Barrett J.J.C., Elert M.L., White C.T., Self-Similar Behavior from Molecular Dynamics Simulations of Detonations, CP429 – Shock Compres. Condens. Matter, The American Inst. of Physics, 1997, pp. 297-300.
  • [6] Haskins P.J., Cook M.D., Fellows J., Wood A., Molecular Dynamics Studies of Fast Decomposition in Energetic Molecules, in: Proc. 11th Int. Deton. Symp., Snowmass, CO, August 1998, pp. 897-903.
  • [7] Decker S.S., Woo T.K., Wei D., Zhang F., Ab Initio Molecular Dynamics Simulations of Multimolecular Collisions of Nitromethane and Compressed Liquid Nitromethane, in: Proc. 12th Int. Deton. Symp., San Diego, CA, 2002, pp. 724-730.
  • [8] O leynik I.I., Conroy M., Zybin S.V., White C.T., Energetic Materials At High Compression: First-Principles Density Functional Theory Studies, in: Proc. 13th Int. Deton. Symp., Norfolk, Virginia, July 23-28, 2006, pp.1191-1198.
  • [9] Fomin V.M., Golovnev I.F., Utkin A.V., Relation between the atomistic Picture and continuum-mechanics description of detonating solid-state explosives, Shock Waves, 2003, 13, 155-165.
  • [10] Smirnov A.L., Karkach S.P., Skrebkov o.V., Dremin A.N., Molecular Dynamics Study of Vibrational - Translational Nonequilibrium in a Liquid of Polyatomic Molecules Behind Shock Wave Front, - in: Proc. Minsk Int. Colloquium on Physics of Shock Waves, Combust., Deton. and Non-Equilibrium Processes, Minsk, 12-17 Nov., 2005, p.40.
  • [11] Smirnov A.L., Dremin A.N., Molecular Dynamics Modelling of Shock and Detonation Phenomena in Liquids of Polyatomic Molecules. – in: Proc. 13th Int. Deton. Symp. Norfolk, Virginia, July 23-28, 2006, pp.1241-1246.
  • [12] Ming L., Davidson J., Nordholm S., Molecular Dynamics Study of Energy Transfer in Binary Collisions of Water Molecules, J. Chem. Phys., 1996, 104(22), 9001-9015.
  • [13] Skrebkov O.V., Smirnov A.L., Classical Dynamics of Vibrational-Translational Energy Transfer in Linear Collisions of an Atom and Diatomic Molecule/ Anharmonic Oscillator, J. Chem. Phys., 1995, 198(3), 297-310.
  • [14] Herzfeld K.F., Litovitz T.A., Absorption and dispersion of ultrasonic waves, Acad. Press, N.Y.-Lond. 1959.
  • [15] Forst W., Theory of Unimolecular Reactions, Academic, New York 1973.
  • [16] Skrebkov O.V., Karkach S.P., Vasil’ev V.M., Smirnov A.L., Hydrogen – Oxygen Reactions Behind Shock Waves Assisted By OH(2Σ+) Formation, Chem. Phys. Lett., 2003, 375, 413-418.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT1-0034-0044
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.