PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Primary Nitramines Related to Nitroglycerine: 1-Nitramino-2,3-dinitroxypropane and 1,2,3-Trinitraminopropane

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The title compounds 1-nitramino-2,3-dinitroxypropane (NG-N1) and 1,2,3-trinitraminopropane (NG-N3) were formed by multi-step reaction from the corresponding amine. Both compounds were fully characterized by means of multinuclear NMR (1 H, 13 C, 14 N) N), vibrational spectroscopy, elemental analysis and mass spectrometry. For prediction of the energetic properties ΔHc values are determined by oxygen bomb calorimetry and validated by quantum theoretical methods. Both compounds are superior in their performance data to nitroglycerine (NG) and pentaerythritol tetranitrate (PETN). In comparison to nitroglycerine the sensitivities towards mechanical stimuli is greatly reduced. X-ray diffraction elucidated the molecular structure of both compounds. NG-N1 crystallizes in the monoclinic space group P21 with a density of 1.799 g/cm(3), NG-N3 in the orthorhombic space group Pnma with a density of 1.783 g/cm(3). The thermal behavior and long term stabilities were checked using differential scanning calorimetry and thermogravimetric measurements. NG-N1, shows for primary nitramines, exceptional stability in the molten phase making this compound suitable for melt-cast application (Tmp: 65 C, Tdec: 170 C).
Rocznik
Strony
255--275
Opis fizyczny
Bibliogr. 36 poz.
Twórcy
autor
autor
  • Department Chemistry and Biochemistry, Energetic Materials Research, Ludwig-Maximilian University of Munich, Butenandtstr. 5-13, D-81377 Munich, Germany, tmk@cup.uni-muenchen.de
Bibliografia
  • [1] www.cup.uni-muenchen.de/ac/klapoetke/
  • [2a] Bachmann W.E., Horton W.J., Jenner E.L., MacNaughton N.W., Maxwell C.E., Nitration of Derivatives of Ethylenediamine, J. Am. Chem. Soc., 1959, 72, 3132.
  • [2b] Brain R.C., Lamberton A.H., Nitroamines. II. Nitration of Some Methylenebisamides and Related Compounds, J. Chem. Soc., 1949, 1633.
  • [3] Stepanov R.S., Astachov A.M., Kruglyakova L.A., Influence of the Primary Nitramines´ Structure on their Thermostability, Int. Annual Conf. ICT 1998, 128/1- 128/7.
  • [4] Astachov A.M., Stepanov R.S., Kruglyakova L.A., Kekin Y.V., Zwitterionic Amine-Nitramines as a New Class of Energetic Materials, ibid., 2000, 13/1-13/10.
  • [5] Lee Y.W., Goede P., Latypov N., Oestmark H., Synthesis and Analysis of N,N´,N´´,N´´´-Tetranitro-1,1,2,2-ethanetetramine and Energetic Salts Thereof, ibid., 2005, 124/1-124/9.
  • [6] Blomquist, A.T., Fiedorek F.T., Nitramines, 1949, US 2485855.
  • [7] Jones R.N., Thorn G.D., The Ultraviolet Absorption Spectra of Aliphatic Nitramines, Nitrosamines, and Nitrates, Can. J. Res., Section B: Chemical Science, 1949, 27B, 828-60.
  • [8] McKay A.F., Manchester D.F., Nitration Products of Some Substituted 2-Nitramino- 1,3-Diaza-2-Cycloalkenes, J. Am. Chem. Soc., 1949, 71, 1970-1973.
  • [9] Klapoetke T.M., Penger A., Scheutzow S., Vejs L., Synthesis, Structure, Chemical and Energetic Characterization of 1,3-Dinitramino-2-Nitroxypropane, Z. Anorg. Allg. Chem., 2008, 634(15), 2994-3000.
  • [10] Blomquist, A.T., Fiedorek F.T, OSRD 4134, 1944, 2, 99-101.
  • [11] Steiner Th., C-H...O Hydrogen Bonding in Crystals, Cryst. Rev., 1996, 6, 1-57.
  • [12] Suceska M., Test Methods for Explosives, Springer, New York 1995, p. 21 (impact)/27 (friction).
  • [13] Suceska M., Calculation of the Detonation Properties of C-H-N-O Explosives, Propellants, Explos. Pyrotech., 1991, 16, 197; M. Suceska, Evaluation of Detonation Energy from EXPLO5 Computer Code Results, Propellants, Explos., Pyrotech., 1999, 24, 280.
  • [14] Frisch M.J. et al., Gaussian 03, Revision B04, Gaussian Inc., Wallingford, CT, 2004.
  • [15] Montgomery J.A. Jr., Frisch M.J., Ochterski J.W., Petersson G.A., A Complete Basis Set Model Chemistry. VII. Use of The Minimum Population Localization Method, J. Chem. Phys., 2000, 112, 6532.
  • [16] Curtiss L.A., Raghavachari K., Redfern P.C., Pople J.A., Assessment of Gaussian-2 and Density Functional Theories for the Computation of Enthalpies of Formation, J. Chem. Phys., 1997, 106, 1063.
  • [17] Byrd E.F.C., Rice B.M., Improved Prediction of Heats of Formation of Energetic Materials Using Quantum Mechanical Calculations, J. Phys. Chem. A., 2006, 110, 1005.
  • [18] Rice B.M., Pai S.V., Hare J., Predicting Heats of Formation of Energetic Materials Using Quantum Mechanical Calculations, Combustion and Flame, 1999, 118, 445.
  • [19] NIST Chemistry WebBook, NIST Standard Reference Database Number 69 (Linstrom P.J., Mallard W.G., Eds.), June 2005, National Institute of Standards and Technology, Gaithersburg MD, 20899 (webbook.nist.gov).
  • [20] Westwell M.S., Searle M.S., Wales D.J., Williams D.H., Empirical Correlations between Thermodynamic Properties and Intermolecular Forces, J. Am. Chem. Soc., 1995, 117, 5013.
  • [21] CrysAlis CCD, Oxford Diffraction Ltd., Version 1.171.27p5 beta (release 01-04- 2005 CrysAlis171 .NET) (compiled Apr 1 2005,17:53:34).
  • [22] CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.27p5 beta (release 01-04- 2005 CrysAlis171 .NET) (compiled Apr 1 2005,17:53:34).
  • [23] SIR-92, A program for crystal structure solution: Altomare A., Cascarano G., Giacovazzo C., Guagliardi A., Completion and Refinement of Crystal Structures with SIR92, J. Appl. Crystallogr., 1993, 26, 343.
  • [24] Sheldrick G.M., SHELXS-97, Program for Crystal Structure Solution, Universität Göttingen, 1997.
  • [25] Sheldrick G.M., SHELXL-97, Program for the Refinement of Crystal Structures, Universität Göttingen, Germany, 1997.
  • [26] Farrugia L.J., WinGX Suite for Single Crystal Small Molecule Crystallography, J. Appl. Cryst., 1999, 32, 837.
  • [27] www.linseis.com
  • [28] NATO Standardization Agreement (STANAG) on Explosives, Impact Sensitivity Tests, No. 4489, Ed. 1, Sept. 17, 1999.
  • [29] WIWEB-Standardarbeitsanweisung 4-5.1.02, Ermittlung der Explosions-gefährlichkeit, hier der Schlagempfindlichkeit mit dem Fallhammer, Nov. 8, 2002.
  • [30] www.bam.de
  • [31] www.reichel-partner.de
  • [32] NATO Standardization Agreement (STANAG) on Explosive, Friction Sensitivity Tests, No. 4487, Ed. 1, Aug. 22, 2002.
  • [33] WIWEB-Standardarbeitsanweisung 4-5.1.03, Ermittlung der Explosions-gefährlichkeit oder der Reibeempfindlichkeit mit dem Reibeapparat, Nov. 8, 2002.
  • [34] a) www.ozm.cz/testing-instruments/small-scale-electrostatic-discharge-tester.html. b) Zeman S., Pelikan V., Majzlik J., Electric Spark Sensitivity of Nitramines. Part II. A Problem of “Hot Spots”, Centr. Europ. J. Energ. Mater., 2006, 3, 45. c) Skinner D., Olson D., Block-Bolten A., Electrostatic Discharge Ignition of Energetic Materials, Propellants, Explos., Pyrotech., 1998, 23, 34.
  • [35] www.parrinst.com
  • [36] Zimmer A., Müller I., Reiß G.J., Caneschi A., Hegetschweiler K., Linear Primary Polyamines as Building Blocks for Coordination Polymers. Part 1. Ligand Synthesis and Metal Complex Formation Of 1,2,3-Triaminopropane, Eur. J. Inorg. Chem., 1998, 2079-2086.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT1-0034-0036
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.