PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Combustion of Energetic Systems Based on HMX and Aluminum: Infuence of Particle Size and Mixing Technology

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work the complex experimental investigation of the microstructure and burning parameters of HMX-monopropellant and 25%Al/75%HMX energetic systems was carried on with the particle size variation. Components, their mixtures, pressed samples, and the combustion products (agglomerates) collected from a burning surface by QPCB (quench particle collection bomb) technique were investigated. Two types of HMX particles: micro-sized (mHMX) and ultrafne (uHMX) and aluminium powders: micro- and ultra-sized (ALEXTM) were used. Morphology and particle size were examined by atomic-force microscopy (AFM), scanning electron microscopy (SEM) and BET-analysis. AFM analysis shows the ALEXTM average volume particle size is 180 nm. It was shown, that the monopropellant's burning rates of the micro- and ultra-sized HMX are almost identical in the pressure range 20-100 atm. Two mixing technologies to prepare Al/HMX compositions were used: (i) conventional "dry" mixing and (ii) "wet" technique with ultrasonic processing in diethyl ether. Applying of ultrasonic technique results in a burning rate increase up to 18% comparing to "dry" mixing (under pressure 60 atm). The highest combustion rate was determined for composition of mHMX/ALEXTM (porosity 13%). Infuence of component N. Muravyev et al. size and composition's microstructure on the burning rate of energetic systems is discussed and analyzed.
Słowa kluczowe
Rocznik
Strony
195--210
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
autor
autor
autor
autor
autor
autor
  • Semenov Institute of Chemical Physics, Russian Academy of Science, 4 Kosygin St., 119991 Moscow, Russia
Bibliografia
  • [1] Frolov Y.V., Pochil P.F., Logachev V.S., Ignition and combustion of powdered aluminium in high-temperature gaseous environment and as part of heterogeneous condensed systems, Fizika Goreniya i Vzriva, 1972, 8(2), 213-236.
  • [2] Lengelle G., Duterque J., Trubert J.F., Combustion of Solid Propellants, ONERA, May 2002.
  • [3] Beckstead M.W., Solid propellant combustion mechanisms and flame structure, Pure & Chem., 1993, 65(2), 297-307.
  • [4] Generalov M.B., Cryochemical nanotechnology, IKC Academkniga, Moscow 2006.
  • [5] Boggs T.L., The Thermal Behavior of RDX and HMX, in: Fundamentals of Solid- Propellant Combustion (K.K. Kuo and M. Summerfield, Eds.), Vol. 90 of Progress in Astronautics and Aeronautics, 1984.
  • [6] Braithwaite P.C., Christensen W.N., Daugherty V., Quench Bomb Investigation of Aluminum Oxide Formation from Solid Rocket Propellants: Experimental Methodology, 25th JANNAF Combustion Meeting (Huntsville, AL), Chemical Propulsion Information Agency, John Hopkins Univ., Applied Physics Lab., CPIAPub-498-VI, Laurel, MD, 1988, pp. 175-184.
  • [7] Imamura Y.Y., Lourenço V.L., Moreira E.D., Oliveira N.N., Study of the particie size and crystal shape over β→δ-HMX transition by DSC and SEM, Proceedings of 34th International Annual Conference of ICT, Karlshure, 2003.
  • [8] Ismail I.M.K.,Hawkins T.W., Evaluation of Electro-exploded Aluminum (ALEX) for Rocket Propulsion, CPIA Publication 650, 1996,Vol. H, pp. 25-39.
  • [9] Jagodnikov D.A., Gusachenko E.I., Experimental investigation of particle size of condensed products of combustion aero-cloud aluminium particles, Fizika Goreniya i Vzriva, 2004, 40(2), 33-41.
  • [10] Sakovich G.V., Arhipov V.A., Vorozhcov A.B., Korotkih A.G., Pevchenko B.V., Popok N.I., Savel’eva L.A., Burning rate regulation of high-energy nanocomposites, Theses IV international conference «HEMs-2008», Biysk, 2008.
  • [11] Shackelford S.A. et al., Deuterium Isotope Effects during HMX Combustion: Chemical Kinetic Burn Rate Control Mechanism Verified, Propellants, Explos., Pyrotech., 1989, 14, 93-102.
  • [12] Fogel’zang A.E., Svetlov B.S., Adzhemjan V.J., Koljasov S.M., Sergienko O.I., Petrov S.M.: Combistion of expolisives with bond nitrogen-nitrogen, Fizika Goreniya i Vzriva, 1976, 6, 827-836.
  • [13] Taylor Т.W., A melting stage in the burning of solid secondary explosives, Combustion and Flame, 1962, 6(2), 103-116.
  • [14] Mitani T., Williams F.A., A model for the deflagration of nitramines, in: 21st Symp. (Int.) on Combustion, The Combustion Inst., Pittsburgh 1986, pp. 1965-1974.
  • [15] Kubota N. Sakamoto S., Combustion mechanism of HMX, Propellants, Explos., Pyrotech., 1989, 14(1), 6-11.
  • [16] Beckstead M.W., Modeling AN, AP, HMX and Double Base Monopropellants, 26th JANNAF Combustion Meeting, Pasadena, CA, 1989.
  • [17] Herrmann M., Engel W., Eisenreich N., Thermal expansion, transitions, sensitivities,and burning rates of HMX, Propellants, Explos., Pyrotech., 1992, 17, 190-195.
  • [18] Denisyuk A.P., Shabalin V.S., Shepelev Yu.G., Combustion of Condensed Systems Consisting of HMX and a Binder Capable of Self-Sustained Combustion, Combustion, Explosion, and Shock Waves, 1998, 34(5), 534-542.
  • [19] Atwood I., Boggs T.L., Burning Rate of Solid Propellant Ingredients, Part 1: Pressure and Initial Temperature Effects, Journal of Propulsion and Power, 1999, 15(6), 740-747.
  • [20] Zenin A.A., Finjakov S.V., Response Functions of HMX and RDX Burning Rates with Allowance for Melting, Combustion, Explosion, and Shock Waves, 2007, 43(3), 309–319.
  • [21] Frolov Y., Pivkina A., High-Energy Condensed Systems, 34th Int. Pyrotechnic Seminar, 2007.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT1-0034-0032
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.