PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Computational Investigation of Amine Complexes of 2,4,6-Trinitrotoluene

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Using the B3PW91/6-31G(d) computational procedure, we fnd two types of complexes to be formed between aliphatic amines and 2,4,6-trinitrotoluene (TNT). Type 1 are noncovalent, primarily electrostatic interactions that occur in the vicinities of the NO2 groups; Type 2 are δ-adducts, at carbons 1, 3 and 5. In Type 1, the TNT framework is very little affected. In Type 2, however, the site of the complex becomes quasi-tetrahedral, with longer bonds to its neighbors in the ring; the C-NO2 bonds are shortened. The Type 1 complexes have weakly negative (attractive) interaction enthalpies. For one of them, utilizing a chargetransfer formalism, we obtained a wave length for an electronic transition to a low-lying dative excited state that is in good agreement with observed values. The Type 2 interaction enthalpies are near-zero or even positive; however all of the complexes correspond to energy minima (no imaginary frequencies). For one of the Type 2, a transition state to a nitronic acid was found, with an activation enthalpy of only 5.6 kcal/mole. This indicates a possible route for amine-induced decomposition of TNT.
Rocznik
Strony
167--182
Opis fizyczny
Bibliogr. 52 poz.
Twórcy
autor
autor
autor
autor
autor
  • Department of Chemistry, University of New Orleans New Orleans, LA 70148 USA, ppolitze@uno.edu
Bibliografia
  • [1] Crampton M.R., Meisenheimer Complexes, Adv. Phys. Org. Chem., 1969, 7, 211-257.
  • [2] Mulliken R.S., Person W.B., Molecular Complexes, Wiley-Interscience, New York 1969.
  • [3] Buncel F., The Role of Meisenheimer or σ-Complexes in Nitroarene-Base Interactions, in: The Chemistry of Functional Groups. Supplement F: The Chemistry of Amino, Nitroso and Nitro Compounds and Their Derivatives, Part 2, (S. Patai, Ed.), Wiley-Interscience, New York 1982, Ch. 27, pp. 1225-1260.
  • [4] March J., Advanced Organic Chemistry, 3rd ed., Wiley-Interscience, New York 1985.
  • [5] Murray J.S., Lane P., Politzer P., Relationships Between Impact Sensitivities and Molecular Surface Electrostatic Potentials of Nitroaromatic and Nitroheterocyclic Molecules, Mol. Phys., 1995, 85, 1-8.
  • [6] Rice B.M., Hare J.J., A Quantum Mechanical Investigation of the Relation Between Impact Sensitivity and the Charge Distribution in Energetic Molecules, J. Phys. Chem. A, 2002, 106, 1770-1783.
  • [7] Politzer P., Laurence P.R., Abrahmsen L., Zilles B.A., Sjoberg P., The Aromatic C-NO2 Bond as a Site for Nucleophilic Attack, Chem. Phys. Lett. 1984, 111, 75-78.
  • [8] Tulis A.J., Keith J.N., Sumida W.K., Heberlein D.C., Non-Explosive Destruction of TNT with Hypergols, Proc. Fourth (Internat.) Pyrotech. Seminar, Steamboat Springs, CO, 1974, 17.1 – 17.32. Also available NTIS AD A057599.
  • [9] Tulis A.J., Labus T.J., Sumida W.K., Keith J.N., Beverage T.C., Heberlein D.C., Hypergolic Fluid Jet Destruction of Land Mines, Proc. Ninth Symp. Expl. Pyrotech., Philadelphia, PA, 1976, 29.1–29.12.
  • [10] Patel D.L., Dillon J., Wright N., “In-Situ Landmine Neutralization Using Chemicals to Initiate Low Order Burning of Main Charge,” www.humanitarian-demining. org/demining/pubs/neutral/insituchem.pdf
  • [11] Foster R., Mackie R.K., Intermolecular Charge-Transfer Complexes of 1,3,5-Trinitrobenzene with Aliphatic Amines, J. Chem. Soc., 1962, 3843-3844.
  • [12] Crampton M.R., Gold V., The Interaction of 1,3,5-Trinitrobenzene with Aliphatic Amines in Dimethyl Sulfoxide Solution, J. Chem. Soc. B, 1967, 23-28.
  • [13] Strauss M.J., Taylor S.P.B., Reznick A., π- and σ-Interactions of Electron-Deficient Aromatics with Amines. Addition to the Ring and to a Ring Substituent, J. Org. Chem., 1972, 37, 3076-3079.
  • [14] Singh J.O., Anunziata J.D., Silber J.J., n-π Electron Donor-Acceptor Complexes. II. Aliphatic Amines with Dinitrobenzenes, Can. J. Chem., 1985, 63, 903-907.
  • [15] Foster R., Fyfe C.A., The Interaction of Electron Acceptors with Bases – XIX: The Interaction of Secondary Amines with 1,3,5-Trinitrobenzene in Acetone Solution, Tetrahedron, 1966, 22, 1831-1842.
  • [16] Foreman M., Foster R., Strauss M., Condensation of Carbanions with 1,3,5-Trinitrobenzene: A New Type of Bicyclic Anion, J. Chem. Soc. C, 1969, 2112-2115.
  • [17] Dwivedi P.C., Interaction of 1,3,5-Trinitrobenzene with Triethylamine and Pyridine, Indian J. Chem., 1975, 13, 1089-1090.
  • [18] Terrier F., Rate and Equilibrium Studies in Jackson-Meisenheimer Complexes, Chem. Rev., 1982, 82, 77-152.
  • [19] Constantinou C.P., Mukundan T., Chaudhri M.M., Cooper J., Sensitization of Nitro Compounds by Amines, Philosoph. Trans. Royal Soc., 1992, A339, 403-417.
  • [20] Ramaswamy A.L., Mukundan T., Chaudhri M.M., Amine Sensitization Studies of Secondary Explosives Using Laser-Induced Ignition, J. Propuls. Power, 2001, 17, 163-168.
  • [21] Stewart R.F., On the Mapping of Electrostatic Properties from Bragg Diffraction Data, Chem. Phys. Lett. 1979, 65, 335-342.
  • [22] Chemical Applications of Atomic and Molecular Electrostatic Potentials, (Politzer P., Truhlar D.G., Eds.), Plenum Press, New York 1981.
  • [23] Politzer P, Murray J.S., Molecular Electrostatic Potentials and Chemical Reactivity, in: Reviews in Computational Chemistry, Vol. 2, (Lipkowitz K.B., Boyd D.B, Eds.), VCH Publishers, New York 1991, ch. 7.
  • [24] Naray-Szabo G., Ferenczy G.G., Molecular Electrostatics, Chem. Rev., 1995, 95, 829-847.
  • [25] Murray J.S., Politzer P., Statistical Analysis of the Molecular Surface Electrostatic Potential: An Approach to Describing Noncovalent Interactions in Condensed Phases, J. Mol. Struct. (Theochem), 1998, 425, 107-114.
  • [26] Bader R.F.W., Carroll M.T., Cheeseman J.R., Chang C., Properties of Atoms In Molecules: Atomic Volumes, J. Am. Chem. Soc., 1987, 109, 7968-7979.
  • [27] Politzer P., Murray J.S., Computational Prediction of Condensed Phase Properties From Statistical Characterization of Molecular Surface Electrostatic Potentials, Fluid Phase Equil., 2001, 185, 129-137.
  • [28] Politzer P., Murray J.S., Lane P., σ-Hole Bonding and Hydrogen Bonding: Competitive Interactions, Internat. J. Quantum Chem., 2007, 107, 3046-3052.
  • [29] Murray J.S., Lane P., Politzer P., Expansion of the σ-Hole Concept, J. Mol. Model., 2009, 15, 723-729.
  • [30] Murray J.S., Lane P., Politzer P., Effects of Strongly Electron-Attracting Components on Molecular Surface Electrostatic Potentials; Application to Predicting Impact Sensitivities of Energetic Molecules, Mol. Phys., 1998, 93, 187-194.
  • [31] Hagelin H., Murray J.S., Brinck T., Berthelot M., Politzer P., Family-Independent Relationships between Computed Molecular Surface Quantities and Solute Hydrogen Bond Acidity/Basicity and Solute-Induced Methanol O-H Infrared Frequency Shifts, Can. J. Chem., 1995, 73, 483-488.
  • [32] Riley K.E., Murray J.S., Concha M.C., Politzer P., Hobza P., Br---O Complexes as Probes of Factors Affecting Halogen Bonding Interactions of Bromobenzenes and Bromopyrimidines with Acetone, J. Chem. Theor. Comp., 2009, 5, 155-163.
  • [33] Politzer P., Murray J.S., Sensitivity Correlations, in: Energetic Materials: Part 2, Detonation, Combustion, (Politzer P, Murray J.S., Eds.), Elsevier, Amsterdam 2003, ch.1, pp. 1-12.
  • [34] Politzer P., Murray J.S., Concha M.C., The Complementary Roles of Molecular Surface Electrostatic Potentials and Average Local Ionization Energies with Respect to Electrophilic Processes, Internat. J. Quantum Chem., 2002, 88, 19-27.
  • [35] Sjoberg P., Murray J.S., Brinck T., Politzer P., Average Local Ionization Energies on the Molecular Surfaces of Aromatic Systems as Guides to Chemical Reactivity, Can. J. Chem. 1990, 68, 1440-1443.
  • [36] Koopmans T.A., Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektonen Eines Atoms, Physica, 1933, 1, 104-113.
  • [37] Nesbet R.K., Electronic Correlation in Atoms and Molecules, Adv. Chem. Phys., 1965, 9, 321.
  • [38] Politzer P., Abu-Awwad F., Murray J.S., Comparison of Density Functional and Hartree-Fock Average Local Ionization Energies on Molecular Surfaces, Internat. J. Quantum Chem., 1998, 69, 607-613.
  • [39] Bulat F.A., Levy M., Politzer P., Average Local Ionization Energies in the Hartree-Fock and Kohn-Sham Theories, J. Phys. Chem. A, 2009, 113, 1384-1389.
  • [40] Brinck T., Murray J.S., Politzer P., Relationships Between the Aqueous Acidities of Some Carbon, Oxygen and Nitrogen Acids and the Calculated Surface Local Ionization Energies of Their Conjugate Bases, J. Org. Chem., 1991, 56, 5012-5015.
  • [41] Gross K.C., Seybold P.G., Peralta-Inga Z., Murray J.S., Politzer P., Comparison of Quantum Chemical Parameters and Hammett Constants in Correlating pKa Values of Substituted Anilines, J. Org. Chem., 2001, 66, 6919-6925.
  • [42] Politzer P., Murray J. S., The Average Local Ionization Energy: Concepts and Applications, in: Chemical Reactivity, (Toro-Labbé A., Ed.), Elsevier, Amsterdam 2007, ch. 13, pp. 119-137.
  • [43] Bondi A., van der Waals Volumes and Radii, J. Phys. Chem., 1964, 68, 441-451.
  • [44] Murray J.S., Lane P., Politzer P., unpublished work.
  • [45] Murray J.S., Concha M.C., Politzer P., Links Between Surface Electrostatic Potentials of Energetic Molecules, Impact Sensitivities and C-NO2/N-NO2 Bond Dissociation Energies, Mol. Phys., 2009, 107, 89-97.
  • [46] Flurry R.L. Jr., Politzer P., Molecular Orbital Theory of Electron Donor-Acceptor Complexes. III. The Relationship of State Energies and Stabilization Energies to the Charge Transfer Transition Energy, J. Phys. Chem., 1969, 73, 2787-2789.
  • [47] Lide D.R., Ed., Handbook of Chemistry and Physics, 87th ed., CRC Press, Boca Raton, FL, 2006.
  • [48] Ma Y., Politzer P., Calculation of Electrostatic and Polarization Energies from Electron Densities, J. Chem. Phys., 2004, 120, 3152-3157.
  • [49] Koppes W.M. and Miller S., unpublished work.
  • [50] Nielsen A T., Nitronic Acids and Esters, in: The Chemistry of the Nitro and Nitroso Groups, Part 1, (Feuer H., Ed.), Wiley-Interscience, New York 1969, Ch. 7, pp. 349-486.
  • [51] Brill T.B., James K.J., Kinetics and Mechanisms of Thermal Decomposition of Nitroaromatic Explosives, Chem. Rev., 1993, 93, 2667-2692.
  • [52] Bharatam P.V., Lammertsma K., Nitro ↔ aci-Nitro Tautomerism in High-Energetic Nitro Compounds, in: Energetic Materials. Part 1. Decomposition, Crystal and Molecular Properties, (Politzer P., Murray J.S., Eds.), Elsevier, Amsterdam 2003, ch. 3, pp. 61-89.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT1-0034-0030
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.