PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Accounts of the new aspects of nitromethane initiation reactivity

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A well-known effect of amines, and also of water, on detonation characteristics of nitromethane (NM) is discussed from the point of view of the published knowledge about the study of initiation reactivity of this nitro paraffin. It is documented that bimolecular and higher interactions during the initiation of NM are impossible. The most widespread concepts of the primary steps of this initiation, i.e. formation of aci-NM anion [CH2=NO2]— by intermolecular hydrogen transfer in the neat NM submitted to shock and formation of this anion by action of an amine, have been scrutinized by the DFT B3LYP/cc-pVTZ+ method and evaluated as thermodynamically disadvantageous. Also the 1,3-intramolecular hydrogen shift in the NM molecule was characterized as a higher-barrier process. Two favorable primary mechanisms of fission in the NM initiation and development of its detonation were investigated by DFT B3LYP/cc-pVTZ+ calculations: homolysis of C–NO2 bond in the neat NM and homolysis of N–OH bond in its aci-form. The second mentioned pathway was found to be thermodynamically the most preferable mechanism of fission. Consequently, a detonation wave of NM with admixture of amine or water has a considerably reduced reaction zone length in comparison with the detonation of neat NM. The B3LYP/6-311++G(d,p) calculations of transition states revealed that an admixture of methylamine and/or water influences the conversion of nitromethane to its aci-form, and this effect is more feasible in the case of methylamine rather than water.
Słowa kluczowe
Rocznik
Strony
119--133
Opis fizyczny
Bibliogr. 46
Twórcy
autor
autor
autor
autor
  • Institute of Energetic Materials, Faculty of Chemical Technology, University of Pardubice, CZ-532 10 Pardubice, Czech Republic
Bibliografia
  • [1] Walker E.F, Initiation and Detonation Studies in Sensitized Nitromethane, Acta Astronautica, 1979, 6, 807-813.
  • [2] Kondikov B.N, Chemical Kinetics of Detonation in Some Organic Liquids, in: Bowen J.R., Manson N.N., Openheim A.K., Soloukhin R.I. (Eds.), Shock Waves, Explosions, and Detonations, Progress in Astronautics and Aeronautics, 1983, 87, pp. 426-441.
  • [3] E ngelke R., Earl W.L., McMichael R.C., Microscopic Evidence that the Nitromethane Aci Ion is a Rate Controlling Species in the Detonation of Liquid Nitromethane, J. Chem. Phys., 1986, 84, 142-146.
  • [4] Gruzdkov Y.A., Gupta Y.M., Mechanism of Chemical Decomposition in a Shocked Condensed Explosive, in: Schmidt, Dandekar, Forbes (Eds.), Conf. Proc., Shock Compression of Condensed Matter, 1998, AIP, 429, 813-818.
  • [5] Blais N.C., Engelke R., Sheffield S.A., Mass Spectroscopic Study of the Chemical Reaction Zone in Detonating Liquid Nitromethane, J. Phys. Chem., 1997., A 101, 8285-8295.
  • [6] L ee J.J., Jiang J., Choong K.H., Lee J.H.S., Effect of Diethylenetriamine and Triethylamine Sensitization on the Critical Diameter of Nitromethane, in: Furnish M.D., Chhabildas L.C., Hixon R.S. (Eds.), Conf. Proc., Shock Compression of Condensed Matter, 2000, AIP, 505, 797-800.
  • [7] Engelke R., Sheffield S.A., Stacy H.L., Quintana J.P., Reduction of Detonating Liquid Nitromethane‘s Chemical Reaction-Zone Length by Chemical Sensitization, Phys. Fluids, 2005, 17, 096102/1-096102/6.
  • [8] Kondrikov B.N., Kozak G.D., Raykova V.M., Starshinov A.V., Detonation of Nitromethane, Dokl. Akad. Nauk SSSR, 1977, 233(3), 402-405.
  • [9] Hehre W.J., A Guide to Molecular Mechanics and Quantum Chemical Calculations, Wavefunction, Irvine, 2003, pp. 45.
  • [10] TITAN v.1.0.8., Wavefunction, Schrödinger, Irvine, 2000.
  • [11] Winey J.M., Gupta Y.M., Shock-Induced Chemical Changes in Neat Nitromethane: Use of Time-Resolved Raman Spectroscopy, J. Phys. Chem., B 101, 1997, 10733-10743.
  • [12] M anaa M.R., Fried L.E., FT and ab initio Study of the Unimolecular Decomposition of the Lowest Singlet and Triplet States of Nitromethane, ibid., A 102, 1998, 9884-9889.
  • [13] D remin A.N., Toward Detonation Theory, Springer-Verlag, New York 1999.
  • [14] L eiber C.-O., Assesment of safety and risk with a microscopic model of detonation, Elsevier Sci. B. V., Amsterdam 2003.
  • [15] Reed E.J., Joannopoulos J.D., Laurenc E., Electronic Excitations in Shocked Nitromethane, Phys. Rev. B: Condens. Matter and Material Phys., 2000, 62, 16500-16509.
  • [16] Tarver C.M., Manaa M.R., Chemistry of Detonation Waves in Condensed Phase Explosives, in: Manaa R.M. (Ed.), Chemistry at extreme conditions, Elsevier B.V., Amsterdam 2005, pp. 495-516.
  • [17] M anaa M. R., Fried L.F., Melius C.F., Elstner M., Frauenheim Th., Decomposition of HMX at Extreme Conditions: A Molecular Dynamics Simulation, ibid., A 106, 2002, 9024-9029.
  • [18] M anaa M.R., Reed E.J., Fried L.E., Gall G.G., Gygi F., Early Chemistry in Hot and Dense Nitromethane: Molecular Dynamics Simulations, 2004, ibid., 120, 10146-10153.
  • [19] Reed E.J., Fried L.E., Manaa M.R., Joannopoulos J.D., A Multi-Scale Approach to Molecular Dynamics Simulations of Shock Waves, in: Manaa R.M. (Ed.), Chemistry at extreme conditions, Elsevier B.V., Amsterdam, 2005, pp. 297-326.
  • [20] M argetis D., Kaxiras E., Elstner M., Frauenheim Th., Manaa M. R., Electronic Structure of Solid Nitromethane: Effects of High Pressure and Molecular Vacancies, 2002. J. Chem. Phys., 117, 788-799.
  • [21] M anelis G.B., Nazin G.M., Rubtsov Yu.I., Strunin V.A., Thermal decomposition and combustion of explosives and powders, Taylor & Francis Group, CRC Press, Boca Raton, 2003.
  • [22] Bharatam P.V., Lammertsma K.I., Nitro = Aci-Nitro Tautomerizm in High-Energetic Nitro Compounds, in: Politzer P., Murray J. (Eds.), Theoretical and computational chemistry, Vol. 13, Energetic Materials, Part 1, Detonation, combustion, Elsevier B. V., Amsterdam 2003, pp. 61-89.
  • [23] Tao Y., Ab-initio Study of the Intramolecular Hydrogen Shift in Nitromethane and Its Acid-Dissociated Anion, in: Ellinger Y., Defranceschi M. (Eds.), Strategies and applications in quantum chemistry: From molecular astrophysics to molecular engineering (Topics in molecular organization and engineering), Kluwer, Dordrecht 1996, pp. 421-425.
  • [24] Idar D.I., Asy S.W., Ferm E.N., Improved Characterization of Nitromethane, Nitromethane Mixtures, and Shaped-Charge Jet Properties, Propellants, Explos., Pyrotech., 1999, 24, 1-6.
  • [25] Gruzdkov Y.A., Gupta Y.M., Mechanism of Amine Sensitization in Shocked Nitromethane, J. Phys. Chem., 1998, A 102, 2322-2331.
  • [26] Woods E. III, Dessiaterik Y., Miller R.E., Baer T., Dynamics in the Early Stages of Decomposition in Liquid Nitromethane and Nitromethane-Diethylamine Mixtures, 2001, ibid., A 105, 8273-8280.
  • [27] E ngelke R., Schiferl D., Storm C.B., Earl W.I., Production of the Nitromethane Aci Ion by Static High Pressure, ibid., 1998, 92, 6815-6819.
  • [28] Nabatov S.S., Zakushev V.V., Dremin A.N., Electrical Properties of Nitromethane Under Shock Compression, Fiz. Goreniya Vzryva, 1975, 11(2), 300-304.
  • [29] Seminario J. M., Concha M., Politzer P., Molecular Dynamics Simulation of Liquid Nitromethane Shocked to 143 kbar, Int. J. Quantum Chem: Quantum Chem. Symp., 1996, 29, 621-625.
  • [30] Novikov S.S., Shkvekhgezmer G.A., Svetostyanova V.V., Shlyapochnikov V.A., Khimiya aliphaticheskikh i alitsiklicheskikh nitrosoedinenii (The chemistry of aliphatic and alicyclic nitrocompounds), Izdat. Khimiya, Moscow 1974, p. 339.
  • [31] Piermarini G.J., Block S., Miller P., Effects of Pressure on the Thermal Decomposition Rates, Chemical Reactivity and Phase Behavior Of HMX, RDX and Nitromethane, in: Bulusu S.N. (Ed.), Chemistry of energetic materials, Kluwer Academic Publ., Dordrecht 1990, pp. 391-412.
  • [32] Odiot S., An Investigation of Detonation on the Microscopic Level, Khim. Fiz., 1993, 12, 684-693.
  • [33] Piermarini G.J., Block S., Muller P., Effects of Pressure on the Thermal Decomposition Kinetics and Chemical Reactivity of Nitromethane, J. Phys. Chem., 1989, 93, 457-462.
  • [34] Zeman S., A Study of Chemical Micromechanism of the Organic Polynitro Compounds Initiation, in: Politzer P., Murray J. (Eds.), Energetic materials, Part 2, Detonation, combustion, Elsevier B. V, Amsterdam 2003, pp. 25-52.
  • [35] Zeman S., Sensitivities of High Energy Compounds, in: Klapoetke T. (Ed.), Structure & Bonding, Vol. 125, High energy density compounds, Springer, New York 2007, pp. 195-271.
  • [36] Kiselev V.G., Gritsan N.P., Theoretical Investigation of a Chemical Structure Influence of Nitroparaffins on the Mechanism and Kinetics of Their Thermal Decomposition, Khim. Fiz., 2006, 25, 54-61.
  • [37] Zeman S., New Application of Kinetics Data of the Low-Temperature Thermolysis of Nitroparaffins , Thermochim. Acta, 1995, 261, 195-207.
  • [38] Hu W.F., He T.J., Chen D.M., Liu F.C., Theoretical Study of the CH3NO2 Unimolecular Decomposition Potential Energy Surface, 2002, J. Phys. Chem., A 106(32), 7294-7303.
  • [39] Nguen M.T., Le H.T., Hajgato B., Veszpremi T., Lin M. C., Nitromethane-Methyl Nitrite Rearrangement: A Persistent Discrepancy Between Theory and Experiment, ibid., 2003, A 107, 4286-4291.
  • [40] Arenas J.F., Otero J., Pealez D., Sot J., The Ground and Excited State Potential Energy Surfaces of Nitromethane Related to Its Dissociation Dynamics After Excitation at 193 nm, ibid., 2003, 119(15), 7814-7823.
  • [41] Alper H.E., Abu-Awwad F., Politzer P., Molecular Dynamics Simulations of Liquid Nitromethane, J. Phys. Chem., 1999, B 103, 9738-9742.
  • [42] L i J-S., Xiao H-M., Dong H-S., A Theoretical Study on the Intermolecular Interaction of Energetic System-Nitromethane Dimer, Chin. J. Chem., 2000, 18(6), 815-819.
  • [43] Politzer P., Seminario J.M., Zacarías A.C., Density Functional Study of Amine Sensitization of Nitromethane, Mol. Phys., 1996, 89, 1511-1520.
  • [44] Ritzman A.M., Miller D., Mosher M., Abstracts, 40th, Midwest Reg. Meeting Am. Chem. Soc., Joplin, MO, LIN05-237, 2005.
  • [45] Reed E.J., Manaa M.R., Fried L.F., Glasemann K.R., Joannopoulos J.D., A Transient Semimetallic Layer in Detonating Nitromethane, Nature Phys., 2008, 4, 72-76.
  • [45] Rice B.M., Hare J., Pai S.V., Mattson W., Krasko G., Trevino S.F., Sorescu D.S., Thompson D.L., Theoretical Chemistry: Applications in Energetic Materials Research, Khim. Fiz., 2001, 20(10), 9-13.
  • [46] Andreev S.G., Babkin A.V., Baum F.N., Imkhovik N.A., Kobylkin I.F., Kolpakov V.I., Ladov S.V., Odintsov V.A., Orlenko L.P., Okhitin V.N., Selivanov V.V., Solovev V.S., Stanyukovich K.P., Chelyshev V.P., Shekhte B.I, Fizika vzryva, Tom 1 (Physics of explosion, Vol. 1), Fizmatlit Moscow 2002.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT1-0034-0027
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.