PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Recent trends in research on energetic materials at Cambridge

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Recent work in our laboratory has established a time-temperature superposition law for a PBX. This was achieved by performing uniaxial compression testing over a wide range of strain rates and temperatures along with Differential Thermal Mechanical Analysis (DMTA). The classic WLF (Williams, Landel, Ferry) transform was found not to fit the shift factor needed to align the data whereas a simple log-linear fit did. The thermal properties (diffusivity, conductivity, heat capacity) of a PBX have been measured three different ways and found to agree (within experimental error) with the classic equation relating these three parameters. This gives us confidence that, for example, hot-spot ignition mechanisms of this class of energetic materials can be accurately modelled using their measured thermal properties. A modular instrumented testing facility has been designed and built to simulate and control the conditions experienced by novel heavy-metal-free (green) primers contained within ammunition. Physical data obtained from the facility, when compared with data from live fire tests, will give a greater understanding of which characteristics are important to functionality. As explosives are granular materials, the techniques developed for studying such materials are being applied to determine the effect of particle size distribution and shape on sensitivity.
Rocznik
Strony
67--102
Opis fizyczny
Bibliogr. 50 poz.
Twórcy
autor
autor
autor
  • SMF Fracture and Shock Physics Group, Cavendish Laboratory, J.J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
Bibliografia
  • [1] Church P.D., Townsley R., Bezance T., Proud W.G., Grantham S.G., Bourne, N.K., Millett J.C.F., Simulation of Precise Setforward and Setback Experiments, Int. J. Impact Engng, 2005, 32, 80-91.
  • [2] Huntington-Thresher W., Church P.D., Kosecki A., Gower B., Gould P., Proud W.G., Chapman D., Response of PBXs and Inert Substitutes in Launch and Impact Scenarios, J. Phys. IV France, 2006, 134, 231-236.
  • [3] Williamson D.M., Siviour C.R., Proud W.G., Palmer S.J.P., Govier R., Ellis K., Blackwell P., Leppard, C., Temperature-Time Response of a Polymer Bonded Explosive in Compression (EDC37), J. Phys. D: Appl. Phys., 2008, 41, 085404.
  • [4] Siviour C.R., Laity P.R., Proud W.G., Field J.E., Porter D., Church P.D., Huntingdon-Thresher W., High Strain Rate Properties of a Polymer-Bonded Sugar: Their Dependence on Applied and Internal Constraints, Proc. R. Soc., 2008, A464, 1229-1255.
  • [5] Williamson D.M., Palmer S.J.P., Proud W.G., Govier R., Brazilian Disc Testing of a UK PBX Above and Below the Glass Transition Temperature, in: Shock Compression of Condensed Matter - 2007, (M. Elert, M.D. Furnish, R. Chau, N. Holmes, J. Nguyen, Eds.), American Institute of Physics, Melville NY 2007, pp. 803-806.
  • [6] Williams M.L., Landel R.F., Ferry J.D., The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-Forming Liquids”, J. Amer. Chem. Soc., 1955, 77, 3701-3707.
  • [7] Thompson D.G., Olinger B., DeLuca R., The Effect of Pressing Parameters on the Mechanical Properties of Plastic Bonded Explosives, Propellants, Explos. Pyrotech., 2005, 30, 391-396.
  • [8] Huntley J.M., Laser Speckle and Its Application to Strength Measurement and Crack Propagation, PhD thesis, Univ. of Cambridge 1986.
  • [9] Goldrein H.T., Huntley J.M., Palmer S.J.P., Whitworth M.B., Field J.E., Optical Techniques for Strength Studies of Polymer Bonded Explosives, in: Proc. 10th Int. Detonation Symposium, (J.M. Short, D.G. Tasker, Eds.), Office of Naval Research, Virginia, Arlington 1995, pp. 525-535.
  • [10] Goldrein H.T., Applications of Optical Strain-Measurement Techniques to Composite Materials, PhD thesis, Univ. of Cambridge 1996.
  • [11] Sjödahl M., Benckert L.R., Electronic Speckle Photography: Analysis of an Algorithm Giving the Displacement with Subpixel Accuracy, Appl. Opt., 1993, 32, 2278-2284.
  • [12] Awaji H., Sato S., Diametral Compressive Testing Method, Trans. ASME: J. Engng Mater. Technol., 1979, 101, 139-147.
  • [13] Carneiro F.L., Barcellos A., Résistance à la Traction des Bétons, RILEM Bull., 1949, 13, 98-125.
  • [14] Hanson-Parr D.M., Parr T.P., Thermal Properties Measurements of Solid Rocket Propellant Oxidizers and Binder Materials as a Function of Temperature, J. Energ Mater., 1999, 17, 1-48.
  • [15] Palmer S.J.P., Williamson D.M., Proud W.G., Bauer, C., Thermal Properties of a UK PBX and Binder System, in: Shock Compression of Condensed Matter - 2007, (M. Elert, M.D. Furnish, R. Chau, N. Holmes, J. Nguyen, Eds.), American Institute of Physics, Melville NY 2007, pp. 849-852.
  • [16] Carslaw H.S., Jaeger J.C., Conduction of Heat in Solids, Oxford University Press, Oxford 1947, p. 8.
  • [17] Lees C.H., On the Thermal Conductivities of Crystals and Other Bad Conductors Phil. Trans. R. Soc. Lond., 1892, A183, 481-509.
  • [18] Price D.M., Jarratt, M., Thermal Conductivity of PTFE and PTFE Composites, Thermochim. Acta, 2002, 392, 231-236.
  • [19] Gandia V., Lopez-Baeza E., A Low-Cost Thermal Diffusivity Measuring Apparatus, J. Phys. E: Sci. Instrum., 1988, 21, 757-759.
  • [20] Musicio A., Bison P.G., Marinetti, S., Grinzato E., Thermal Diffusivity Measurement in Slabs Using Harmonic and One-Dimensional Propagation of Thermal Waves, Int. J. Thermal Sci., 2004, 43, 453-463.
  • [21] Sidles P.H., Danielson G.C., Thermal Diffusivity of Metals at High Temperatures, J. Appl. Phys., 1954, 25, 58-67.
  • [22] Parrott J.E., Stuckes A.D., Thermal Conductivity of Solids, London, Pion 1975, p. 26.
  • [23] Meyer R., Explosives (Third Edition), VCH Verlag, Germany, Weinheim 1987, pp. 212-213.
  • [24] Fischbein A., Rice C., Kon S.H., Petrocci M., Selikoff, I.J., Exposure to Lead In Firing Ranges, J. Amer. Medical Assoc., 1979, 241, 1141-1144.
  • [25] Valway S.E., Martyny J.W., Miller J.R., Cook M., Mangoine, E.J., Lead Absorption in Indoor Firing Ranges, Amer. J. Public Health, 1989, 79, 1029-1032.
  • [26] Huynh M.H.V., Hiskey M.A., Meyer T.J., Wetzler M., Green Primaries: Environmentally Friendly Energetic Complexes, Proc. Nat. Acad. Sci. USA, 2006, 103, 5409-5412.
  • [27] Klapötke T.M., Sabaté C.M., Welch J.M., Alkali metal 5-nitrotetrazolate salts: Prospective replacements for service lead(II) azide in explosive initiators, Dalton Trans., 2008, 6372-6380.
  • [28] Encyclopedia of Explosives and Related Items, (Fedoroff B.T., Ed.), Picatinny Arsenal, Dover NJ 1960, Vol. 1, pp. VII-XXVI.
  • [29] Bailey A., Murray S.G., Explosives, Propellants and Pyrotechnics, Chapter 4, Brassey’s (UK) Ltd., Oxford 1989, 59-77.
  • [30] Rahman S., Timofeev E., Kleine H., Pressure Measurements in Laboratory-Scale Blast Wave Flow Fields, Rev. Sci. Instrum., 2007, 78, 125106.
  • [31] Doru G., Traian R., Viorel T., Teodora Z., Ballistic Performances of Primers: A New Experimental Method for Evaluation, in: Proc. 10th Seminar on New Trends In Research of Energetic Materials, (J. Ottis and M. Krupka, Eds.), Czech Republic, University of Pardubice, Pardubice 2007, pp. 607-615.
  • [32] Watt D., Peugeot F., Doherty R., Sharp M., Topler D., Tucker, D., Reduced Sensitivity RDX: Where Are We? in: Proc. 35th Int. Ann. Conf. of Institut für Chemische Technologie”, Fraunhofer Institut für Chemische Technologie, Germany, Karlsruhe 2004, paper 9.
  • [33] Doherty R.M., Nock L.A., Watt D.S., Reduced Sensitivity RDX Round Robin Program: Update, in: Proc. 37th Int. Ann. Conf. of Institut für Chemische Technologie, Fraunhofer Institut für Chemische Technologie Germany, Karlsruhe 2006, paper 5.
  • [34] Doherty R.M., Watt D.S., Relationship Between RDX Properties and Sensitivity, Propellants, Explos. Pyrotech., 2008, 33, 4-13.
  • [35] Bowden F.P., Gurton O.A., Birth and Growth of Explosion in Liquids and Solids Initiated by Impact and Friction, Proc. R. Soc. Lond., 1949, A198, 350-372.
  • [36] Bourne N.K., Field J.E., Bubble Collapse and the Initiation of Explosion, Proc. R. Soc. Lond., 1991, A435, 423-435.
  • [37] Field J.E., Walley S.M., Proud W.G., Balzer J.E., Gifford M.J., Grantham S.G., Greenaway M.W., Siviour C.R., The Shock Initiation and High Strain Rate Mechanical Characterization of Ultrafine Energetic Powders and Compositions, Mater. Res. Soc. Symp. Proc., 2004, 800, 179-190.
  • [38] Chakravarty A., Proud W.G., Field J.E., Small Scale Gap Testing of Novel Compositions, in: Shock Compression of Condensed Matter - 2003, (M.D. Furnish, Y.M. Gupta, J.W. Forbes, Eds.), American Institute of Physics, Melville NY 2004, pp. 935-938.
  • [39] Czerski H., Proud W.G., Field J.E., The Relationship Between Shock Sensitivity and Morphology in Granular RDX, Centr. Europ. J. Energ. Mater., 2006, 3(3), 3-13.
  • [40] Czerski H., Proud, W.G., Field, J.E., The Relationship Between Particle Morphology and Sensitivity for Pure Granular RDX, in: Proc. Thirteenth International Detonation Symposium, (S. Peiris, R. Doherty, Eds.), Office of Naval Research, Arlington VA 2007, pp. 581-590.
  • [41] Oxley J., Smith J., Buco R., Huang J., A Study of Reduced-Sensitivity RDX, J. Energ. Mater., 2007, 25, 141-160.
  • [42] Lecume S., Boutry C., Spyckerelle C., Structure of Nitramines Crystal Defects Relation with Shock Sensitivity, in: Proc. 35th Ann. Conf. Institut für Chemische Technologie, Karlsruhe 2004, paper 2.
  • [43] Baillou F., Dartyge J.M., Spyckerelle C., Mala J., Influence of Crystal Defects on Sensitivity of Explosives, in: Proc. 10th Int. Detonation Symposium, (J.M. Short, D.G. Tasker, Eds.), Office of Naval Research, Virginia, Arlington 1995, pp. 816-823.
  • [44] Borne L., Patedoye J.C., Spyckerelle S., Quantitative Characterization of Internal Defects in RDX Crystals, Propellants, Explos., Pyrotech., 1999, 24, 255-259.
  • [45] Moulard H., Kury J.W., Delclos A., The Effect of RDX Particle Size on the Shock Sensitivity of Cast PBX Formulations, in: Proc. Eighth Symposium (Int.) on Detonation, (J.M. Short, Ed.), Naval Surface Weapons Center, Maryland, White Oak, Silver Spring 1985, pp. 902-913.
  • [46] Khasainov B.A., Ermolaev B.S., Presles H.N., Vidal P., On the Effect of Grain Size on Shock Sensitivity of Heterogeneous High Explosives, Shock Waves, 1997, 7, 89-105.
  • [47] Greenaway M.W., Gifford M.J., Proud W.G., Field J.E., Goveas S.G., An Investigation into the Initiation of Hexanitrostilbene by Laser-Driven Flyer Plates, in: Shock Compression of Condensed Matter - 2001, (M.D. Furnish, N.N. Thadhani, Y. Horie, Eds.), American Institute of Physics, Melville NY 2002, pp. 1035-1038.
  • [48] Walley S.M., Field, J.E., Greenaway M.W., Review: Crystal Sensitivies of Energetic Materials, Mater. Sci. Technol., 2006, 22, 402-413.
  • [49] Addiss J., Cai J., Walley S., Proud W., Nesterenko V., High Strain and Strain-Rate Behaviour of PTFE/Aluminium/Tungsten Mixtures, in: Shock Compression of Condensed Matter - 2007, (M. Elert, M.D. Furnish, R. Chau, N. Holmes, J. Nguyen, Eds.), American Institute of Physics, Melville NY 2007, pp. 773-776.
  • [50] Czerski H., Proud W.G., Relationship Between the Morphology of Granular Cyclotrimethylene-Trinitramine and Its Shock Sensitivity, J. Appl. Phys., 2007, 102, 113515.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT1-0034-0025
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.