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EFEKTYWNA ANALIZA NIEZAWODNOŚCIOWA SYSTEMÓW Z PĘTLAMI ZALEŻNOŚCI 
FUNKCYJNYCH 

 EFFICIENT RELIABILITY ANALYSIS OF SYSTEMS WITH FUNCTIONAL 
DEPENDENCE LOOPS 

Zależność funkcyjna zachodzi wtedy, gdy uszkodzenie jednego komponentu systemu prowadzi do niedostępności bądź 
nieużywalności innych komponentów w tym samym systemie. Zależności funkcyjne mogą tworzyć pętle. Tradycyjne 
podejścia do problemu pętli zależności funkcyjnych oparte są na modelach Markova, które są nieefektywne ze względu 
na dobrze znany problem eksplozji stanów. W niniejszym artykule przedstawiamy nowe, wydajne podejście analityczne 
do rozwiązywania pętli zależności funkcyjnych w analizie niezawodności systemów. Opierając się na strategii “dziel 
i rządź”, podejście to umożliwia transformację systemu z pętlami zależności funkcyjnych w podsystemy bez zależności 
i bez pętli, które następnie można oceniać wykorzystując wydajne podejścia kombinatoryczne. Proponowane podejście 
można stosować do analizy systemów z komponentami o ogólnych rozkładach czasu do uszkodzenia. Podstawy i zalety 
proponowanego podejścia zilustrowano poprzez szczegółową analizę przykładu.

Słowa kluczowe:  Zależność funkcyjna (FDEP), pętla, niezawodność, metoda transformacji, strategia 
dziel i rządź, dynamiczne drzewo uszkodzeń.

Functional dependence occurs when the failure of one component causes other components within the same system to 
become inaccessible or unusable. And, amongst the functional dependencies there can be the existence of loops. Tra-
ditional approaches to handling functional dependence loops are based on Markov models, which are ineffi cient due 
to the well-known state space explosion problem. In this paper we propose a new and effi cient analytical approach to 
handling functional dependence loops in the system reliability analysis. Based on the divide-and-conquer strategy, the 
approach transforms a system with functional dependence loops into subsystems without dependence or loops, which 
can then be evaluated using effi cient combinatorial approaches. The proposed approach is applicable to analyzing 
systems with components having general time-to-failure distributions. The basics and advantages of the proposed ap-
proach are illustrated through a detailed analysis of an example.

Keywords: Functional dependence (FDEP), loop, reliability, transform method, divide-and-conquer, 
dynamic fault tree.

1. Introduction

Functional dependence is a typical trait that occurs in many 
real-world systems. For example, when communication is 
achieved via a network interface card (NIC), the failure of the 
NIC makes the connected components inaccessible in the net-
work [2]. For another example, in a computer system, peripheral 
devices are accessed through I/O controllers. If the I/O control-
ler fails, the peripheral devices connected to it become unusable 
[5]. In general, functional dependence occurs when the failure 
of one component (referred to as the trigger component) causes 
other components (referred to as dependent components) within 
the same system to become inaccessible or unusable [2]. 

The functional dependence behavior can be modeled via 
a Functional DEPendence (FDEP) gate in the dynamic fault 
tree analysis [2,3]. As shown in Figure 1, the FDEP gate has 
a single trigger input, a non-dependent output reflecting the 
status of the input trigger event, and one or more dependent 
basic events. The trigger input can be either a basic event (rep-
resenting the failure of a system component) or the output from 
another gate in the dynamic fault tree. When the trigger event 

occurs, all the dependent basic events are forced to occur. The 
separate occurrence of any of the dependent basic events has 
no effect on the trigger input. The FDEP gate has no logical 
output, thus it is connected to the top gate of the dynamic fault 
tree through a dashed line.

Fig. 1. The FDEP gate

The existing approaches for handling FDEP include an OR-
gate replacement method and state-space-based approaches, in 
particular, continuous time Markov chain (CTMC)-based meth-
ods. In the OR-gate replacement method, the FDEP behavior 
is handled by replacing the FDEP gate with logic OR gate(s). 
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This is because each dependent component fails if it fails in-
trinsically, or if its trigger component fails. As an illustration, 
consider a system with FDEP represented in the dynamic fault 
tree model of Figure 2. Figure 3 shows the equivalent fault tree 
model after replacing the FDEP gate in Figure 2 with two OR 
gates, one for each dependent component. As a consequence of 
this OR-gate replacement, systems with FDEP can be analyzed 
using efficient combinatorial approaches for the dynamic fault 
tree analysis, such as inclusion-exclusion or sum-of-disjoint 
products based on minimal cut/path sets, and binary decision 
diagrams (BDD) [2]. However, the OR-gate replacement ap-
proach is limited to analyzing systems with perfect fault recov-
ery mechanism and without FDEP loops. 

Fig. 2. Original dynamic fault tree with FDEP

Fig. 3. Fault tree after OR-gate replacement

Amongst the functional dependencies there can be the exi-
stence of loops. That is, A brings down B which brings down C 
which can bring down A (Figure 4). In the case of loops existing 
in the dependencies, the OR-gate replacement method will not 
work because the loops represent feedback paths that fail most 
Boolean logic representation. In other words, if you try to do 
the OR-gate replacement, you will have loops between inputs 
and outputs of the OR gate that replaces the FDEP gate. 

Fig. 4. An example of FDEP loops

The CTMC-based method is the existing approach for 
dealing with FDEP loops in the system reliability analysis. 
Unfortunately, the Markov-based method has a significant di-
sadvantage that the model size grows exponentially as the size 
of the system increases. An illustration of this state-explosion 
problem is given in Section 4. The rapid growth of the number 
of states often leads to models that are computationally intensi-
ve and even intractable. Therefore, the CTMC-based methods 
can offer exact solution to the analysis of systems with only 
very limited size. Furthermore, the CTMC-based methods are 
typically not able to handle non-exponential time-to-failure di-
stributions for trigger components and dependent components 
of FDEP. 

To overcome the above mentioned problems of the existing 
methods, we propose a new and efficient method to the reliabi-
lity analysis of systems with FDEP loops. The proposed method 
is combinatorial, and can be applicable to analyzing systems 
with general time-to-failure distributions. 

The reminder of the paper is organized as follows: Section 
2 presents our proposed approach for efficiently handling FDEP 
loops. In Section 3, a case study is performed to illustrate the 
application and advantages of the proposed combinatorial ap-
proach. Section 4 discusses the proposed method in comparison 
to the Markov-based approach. In the last section, we present 
our conclusions as well as directions for future work. 

2. The Proposed Combinatorial Approach

Various transform methods have been used by mathema-
ticians to simplify the calculation of probabilistic measures 
[1]. As an example, the logarithm function is one of the first 
transform methods used successfully. Using the identity of log 
(A*B) = log A + log B, the problem of multiplying two large 
numbers can be converted to a simpler problem of adding two 
small numbers. Motivated by this simple, yet insightful idea and 
based on the divide-and-conquer strategy, we propose to trans-
form the original reliability problem involving FDEP loops into 
multiple reduced problems without FDEP or loops. The resul-
tant reduced problems can be solved efficiently without using 
the inefficient Markov-based methods. The final solution can 
be obtained by integrating results of these reduced problems 
based on the total probability theorem. 

Note that in this work we assume that if the system consi-
dered is a fault-tolerant system, then the system’s fault recovery 
mechanism is perfect, i.e., the system has perfect fault cove-
rage. Also, we assume that the system is not subject to other 
dynamic behaviors such as sequence dependence, priorities, 
warm spares, and cold spares. Addressing FDEP in imperfect 
fault coverage systems as well as systems with those other dy-
namic behaviors is part of our future work.

In the following, the proposed combinatorial transforma-
tion method for handling FDEP loops is detailed as a three-step 
algorithm. 

Step 1: Build a dependent trigger event (DTE) space. 
Assume a system with FDEP involves m trigger events (deno-
ted by Ti, i=1…m). Based on these m elementary trigger events, 
we define a set of 2m collectively exhaustive and mutually exc-
lusive combined events that can occur in the system. Those 
combined events are termed as dependent trigger events (DTE) 
in this work. In particular, each DTE is a distinct and disjoint 
combination of elementary trigger events: 
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 ,...211 mTTTDTE ∩∩∩=  

 mTTTDTE ∩∩∩= ...212 ,
  … … , 

 mTTTDTE m ∩∩∩= ...212 . 

The complete set of DTE is termed as a “DTE space”. The 
occurrence probability of DTEi denoted by Pr(DTEi) can be 
easily calculated based on the occurrence probability of ele-
mentary trigger events, as illustrated in the example analysis 
in Section 3.

Step 2: Generate and solve reduced problems. Based on 
the DTE space built in Step 1 and the total probability theorem 
[1], the occurrence probability of the event of the system fail-
ure, i.e., the system unreliability can be calculated as Eq. (1).

   (1)

Using Eq. (1), the reliability problem for a system with 
FDEP loops is transformed into 2m reduced reliability problems, 
Pr(system fails|DTEi). To evaluate these reduced problems, it is 
necessary to obtain the fault tree model for each of them based 
on the original system dynamic fault tree model. The generation 
process of the reduced fault tree model is as follows: 

Ignore all FDEP gates and the related trigger events.1) 
Replace each basic event affected by 2) DTEi by a constant 
logic value ‘1’ (True). Denote the set of components af-
fected by DTEi as 

iDTES . And define a set of components 
that are functionally dependent on the same elementary 
trigger event as a functional dependence group (FDG). 
Then the set 

iDTES  can be obtained by performing the 
union operation on all related FDG whose corresponding 
trigger event(s) occur when the event DTEi occurs. For 
example, consider a system with two elementary trigger 
events T1 and T2. For the event of 12 2DTE T T= ∩ , the 
corresponding set 

2DTES  is simply 
2TFDG  since the oc-

currence of DTE2 implies the occurrence of T2; for the 
event of 214 TTDTE ∩= , the corresponding set 

4DTES  
will be the union of 

1TFDG , 
2TFDG , and 

21 TTFDG ∩  (appli-
cable when 21 TT ∩  serves as a trigger event of a FDEP 
gate) since the occurrence of DTE4 implies the occurren-
ce of both T1 and T2. 
Apply a Boolean reduction to the system fault tree to ge-3) 
nerate a simpler fault tree in which all the components 
affected by DTEi do not appear. 

Note that a special treatment must be performed when some 
trigger events of FDEP gates in the original fault tree model 
also appear as basic events of other gates/parts of the system 
fault tree model. For example, the event C in Figure 5 serves as 
not only a trigger event of FDEP, but also an input event to the 
left AND gate. These events with two identities are termed as 
dual events. At this case, to generate the correct reduced fault 
tree model, in the above step 1) only the trigger event identity 
of a dual event will be ignored; the basic event identity of the 
dual event will be kept. In step 2) the basic event identity of the 
dual event will be replaced by a constant logic value ‘1’ (True) 
if the event itself (e.g., C) appears in DTEi; or by a constant 
logic value ‘0’ (False) if the complement of the event (e.g., C) 
appears in DTEi. 

The evaluation of the reduced fault tree models gives the 
solution to the reduced problems Pr(system fails|DTEi). Note 
that since the effects of FDEP are out of picture, these reduced 
problems can be solved using efficient combinatorial methods, 
for example, the BDD-based method [2], [4], [7], [6]. Further-
more, since these reduced problems are independent, they could 
be solved in parallel given available computing resources.

Step 3: Integrate for the final system unreliability. After 
each reduced problem is separately conquered, lastly, using Eq. 
(1) the results of all the reduced problems are integrated with 
the occurrence probabilities of DTEi to obtain the final unrelia-
bility of the system with FDEP loops. 

3. Example Analysis and Results 

3.1. An illustrative example

Figure 5 illustrates the dynamic fault tree model of an 
example system subject to a FDEP loop, where A brings down 
B that brings down C that brings down A. The loop is modeled 
using three cascaded FDEP gates, which form a domino chain. 

Fig. 5. An example of systems with FDEP loops

Two different sets of input failure parameters for system 
components will be used in the analysis:

Set 1: All the six components of the system fail exponen-
tially with a constant failure rate of λ = 0.00001/hour. This set 
is used to verify the proposed approach using the existing Mar-
kov-based method.

Set 2: Components A, C, and D fail with different fixed pro-
babilities: qA=0.01, qC=0.02, qD=0.03. Components B, E, and 
F fail exponentially with constant failure rates: λB=0.00001/hr, 
λE=λF=0.0001. This set is used to illustrate that the proposed 
approach has no limitation on the type of time-to-failure distri-
butions for the system components. 

The mission times (t) of 1000 hours, 10000 hours, and 
100000 hours are considered for both sets in the reliability ana-
lysis.

3.2. Example analysis

The three-step combinatorial method described in Section 
2 can be applied to solve the example system in Figure 5 as 
follows. 

Step 1: Build the DTE space. Because there are three ele-
mentary trigger events (A, B, and C), the DTE space for the 
example system in Figure 5 contains 8 DTE, which are shown 
in the first column of Table 1. The second column of Table 1 
shows the calculation method of Pr(DTEi) given that the three 
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trigger events are s-independent. Note that when a compo-
nent, for example, A fails exponentially,  and 

; when it fails with a fixed probability, Pr(A) = qA 
and AqA −=1)Pr( . 

Tab. 1. DTE & calculation of Pr(DTE
i
)

DTEi Pr(DTEi)

CBADTE ∩∩=1 )Pr()Pr()Pr( CBA

CBADTE ∩∩=2 )Pr()Pr()Pr( CBA

CBADTE ∩∩=3 )Pr()Pr()Pr( CBA

CBADTE ∩∩=4 )Pr()Pr()Pr( CBA

CBADTE ∩∩=5 )Pr()Pr()Pr( CBA

CBADTE ∩∩=6 )Pr()Pr()Pr( CBA

CBADTE ∩∩=7 )Pr()Pr()Pr( CBA
CBADTE ∩∩=8 )Pr()Pr()Pr( CBA

Step 2: Generate and solve reduced problems. According 
to Eq. (1), the unreliability of this example system can be cal-
culated as Eq. (2).

   (2)

According to the approach described in Step 2 of the 
combinatorial approach in Section 2, the sets of components 
affected by the eight DTE are:  },,,{ ECBAS

kDTE =  
for k=2,3,…,8 since },,,{ ECBAFDGFDGFDG CBA === . To 
generate the reduced fault tree models, because the event C 
is a dual event, the special replacement and reduction process 
(described in Step 2 of Section 2) will be applied. Figure 6(a) 
shows the fault tree model for the reduced problem #1, i.e., 
Pr(System fails|DTE1). The fault tree models for the reduced 
problems #2-8 are the same and shown in Figure 6(b).

With the FDEP loop removed, the two reduced fault tree 
models in Figure 6 can be solved using the efficient BDD-based 
combinatorial method [4], [7], [6]. Figure 7 shows the corre-
sponding BDD models for those two reduced fault trees. The 
evaluation of the BDD models gives: Pr(System fails|DTE1) = 
Pr(E)*Pr(F), Pr(System fails|DTEi) = Pr(D) + (1-Pr(D))*Pr(F), 
for i = 2, 3, ..., 8.

Fig. 6. Reduced fault tree models: a) For reduced problem #1, b) For 
reduced problems #2-8

Step 3: Integrate for the final system unreliability. Ac-
cording to Eq. (2), we obtain the final system unreliability for 
the example system in Figure 5 by combining the results of 
those reduced problems derived in Step 2 with the occurrence 
probabilities of 8 DTE as Eq. (3). 

Fig. 7. BDD of reduced problems: a) For reduced problem #1, b) For 
reduced problems #2-8

  (3)

Because ∑ =
=

8

1
1)Pr(

k kDTE , Eq. (3) can be simplified as 
Eq. (4). 

   (4) 

3.3. Example results

Using the two sets of input failure parameters given in Sec-
tion 3.1, we obtained the system unreliability results for the 
mission times of 1000 hours, 10000 hours, and 100000 hours 
as shown in Table 2. All the unreliability results using para-
meters of Set 1 are consistent with those obtained using the 
Markov-based method. Note that the Markov-based approach 
cannot analyze the example system with the input parameters 
of Set 2 because some components have non-exponential time-
to-failure distributions.

Tab. 2. Unreliability results of the example system

t (hrs) 1000 10000 100000

Set 1 6.812974e-4 0.053690 0.841509

Set 2 1.352411e-2 0.429324 0.999939

4. Discussions

In summary, using the proposed combinatorial method to 
solve the example system of Figure 5, we only need to analy-
ze two reduced fault tree models both with 2 components (as 
shown in Figure 6) using efficient combinatorial approaches, 
for example, BDD (as shown in Figure 7). 

In contrast, using the traditional Markov-based method, we 
must solve a compact Markov chain (after merging all failure 
states and related transitions) with 8 states and 15 transitions 
as shown in Figure 8. In Figure 8, the state “SF” represents the 
system failure state, and each of the other states is represented 
by its operational components. For example, the state (ABCE) 
represents a state in which components A, B, C, & E are ope-
rational and components D & F have failed. Additionally, the 
system with non-exponential failure distributions cannot be 
analyzed using the traditional Markov-based method, but can 
be analyzed using our proposed combinatorial method as illu-
strated in Section 3.
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5. Conclusions and Future Work

In this paper, we presented an analytical and combinatorial 
method for the reliability analysis of systems with FDEP loops. 
Following the principle of the divide-and-conquer strategy, the 
method divides/transforms the original reliability problem with 
FDEP loops into several independent reduced problems witho-
ut FDEP or loops. The resultant reduced problems can be co-
nquered/solved using efficient combinatorial methods. Lastly, 
results of the reduced problems are integrated based on the total 
probability theorem to obtain the final system unreliability. As 
compared to the existing Markov-based methods, the propo-
sed approach is computationally more efficient and can handle 
more general time-to-failure distributions. The proposed appro-
ach can also analyze systems with FDEP but without loops. 

As mentioned in Section 2, in our future work, we will 
explore efficient approaches for considering functional depen-
dence in imperfect fault coverage systems as well as systems 
with dynamic behavior of sequence dependence, priorities, 
warm spares, and cold spares.

Fig. 8. CTMC in the equivalent Markov solution
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