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MODELOWANIE DYNAMICZNO-NIEZAWODNOŚCIOWE SYSTEMÓW Z USZKODZENIAMI 
O WSPÓLNEJ PRZYCZYNIE W WARUNKACH OBCIĄŻENIA LOSOWEGO

DYNAMIC RELIABILITY MODELING OF SYSTEMS WITH COMMON CAUSE FAILURE 
UNDER RANDOM LOAD

Artykuł przedstawia nową metodę tworzenia modeli dynamiczno-niezawodnościowych systemów, w których niezawod-
ność i stopa ryzyka wyrażane są jako funkcje obciążenia, wytrzymałości i czasu. W pierwszej części artykułu przed-
stawiono sposób tworzenia modeli niezawodnościowych systemów z uszkodzeniami o wspólnej przyczynie stosując 
model interferencji pomiędzy obciążeniem a wytrzymałością, oraz wyprowadzono funkcje rozkładu kumulacyjnego 
oraz gęstości prawdopodobieństwa wytrzymałości dla różnych systemów. Utworzono także modele niezawodnościo-
we systemów w warunkach cyklicznego obciążenia losowego. Następnie opisano proces obciążania jako proces sto-
chastyczny Poissona oraz wyprowadzono dynamiczne modele niezawodnościowe systemów o nie zmniejszającej się i 
zmniejszającej się wytrzymałości. Na koniec omówiono związek pomiędzy niezawodnością i czasem oraz stopę ryzyka 
systemów. Wyniki pokazują, że nawet przy nie zmniejszającej się wytrzymałości, niezawodność systemów zmniejsza się 
wraz z upływem czasu, podobnie jak ich stopa ryzyka. Gdy spada wytrzymałość, niezawodność systemów zmniejsza się 
szybciej wraz z upływającym czasem. Proponowane modele można wykorzystywać przy ustalaniu czasu trwania pracy 
próbnej, czasu niezawodnej pracy oraz harmonogramu eksploatacyjnego. Są one pomocne w zarządzaniu cyklem życia 
systemów.

Słowa kluczowe:  dynamiczna niezawodność; uszkodzenie o wspólnej przyczynie; niezawodność syste-
mu; stopa ryzyka; interferencja pomiędzy obciążeniem a wytrzymałością

This paper presents a new method for developing the dynamic reliability model of systems, in which reliability and 
hazard rate of systems are expressed as functions of load, strength and time. First, reliability models of systems with 
common cause failure are developed by applying the load-strength interference model, and the cumulative distribution 
function and the probability density function of strength for different systems are derived. Reliability models of systems 
under repeated random load are developed. Then, the loading process is described as a Poisson stochastic process, the 
dynamic reliability models of systems without strength degeneration and those with strength degeneration are derived. 
Finally, the relationship between reliability and time, and the hazard rate of systems, are discussed. The results show 
that even if strength does not degenerate, the reliability of systems decreases over time, and the hazard rate of systems 
decreases over time, too. When strength degenerates, the reliability of systems decreases over time more rapidly, and 
the hazard rate curves of systems are bathtub-shaped. The models proposed can be applied to determine the duration 
of a trial run, the reliable operation life and the maintenance schedule. It is helpful for the life cycle management of 
systems.

Keywords: dynamic reliability; common cause failure; system reliability; hazard rate; load-strength 
interference

1. Introduction

Reliability, as the probability for products to perform its 
intended functions satisfactorily under specified conditions for 
a specified period of time, has long been treated as one of the 
most important performance attributes of products. It has been 
embodied in all stages of product life cycle, such as design, 
manufacture, service and maintenance [9-10,16].

Common cause failure (CCF), as one of the important fa-
ilure modes, exists in many engineering systems, especially 
in nuclear plants, aviation & astronavigation systems, where 
high reliability is demanded [14,15,28,30]. Many researchers 
have investigated the effect of CCF on reliability, and introdu-
ced a variety of reliability models of systems with CCF, such 
as common load model (CLM) [17], basic parameter model 

(BPM) [24], binomial failure rate (BFR) model [2], α factor mo-
del (AFM) [18], stochastic reliability analysis (SRA) model [6], 
and random probability shock (RPS) model [8]. Some of these 
models have been applied successfully in reliability analysis and 
probability risk assessment of engineering systems [4,25].

On the other hand, reliability calculated by conventional re-
liability models, is the reliability when random load is applied 
only once or for a specified number of times [1,13, 19,26]. In 
other words, these models cannot reflect the relationship be-
tween reliability and the number of load applications explicitly 
[26]. Although fatigue reliability models can be used to cal-
culate the reliability of components or systems corresponding 
to a different number of load cycles, they can only reflect the 
effect of strength degeneration caused by the repetition of load, 
but cannot reflect the effect of load itself on reliability.
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Recently, several researchers have investigated the effect 
of time-dependent factors on reliability and proposed several 
dynamic reliability models. Torres & Ruiz [23] proposed an ap-
proach to evaluating structural reliability that takes into account 
capacity degradation over time by means of closed mathemati-
cal expressions. They considered events of different intensities 
by means of environmental hazard curves and assumed that 
the structural capacity decreased linearly with time. Huang & 
Chang [10] applied a modularization algorithm on a fault tree, 
and presented an enhanced approach for sensitivity analysis of 
dynamic failure tree models with dependencies. Becker et al [7] 
proposed a theory of dynamic reliability that incorporates ran-
dom changes of the state variables at the time points of trans-
ition between the discrete states of the Markovian component 
of the model. Czarnecki & Nowak [3] developed a time-variant 
reliability-based model for evaluation of steel highway bridges 
with regard to corrosion, in which load and resistance parame-
ters were treated as time-variant random variables, and the limit 
state functions were formulated based on the available models. 
Schoenig et al [20] proposed a quantitative analysis method for 
reliability of hybrid systems, based on the construction of an 
aggregated Markov graph and the Petri net model of systems. 
Streicher & Rackwitz [21] proposed a method for reliability-
oriented time-variant structural optimization of independent se-
ries systems using the first order reliability methods in standard 
space. Ionescu et al [13] used the Petri nets formalism to model 
the reliability of the medium voltage distribution systems for 
a nuclear power plant. Tian & Noore [22] proposed a support 
vector machine modeling approach for dynamic software relia-
bility prediction.

In the literature reviewed, the hazard rate of components in 
the systems was usually assumed to be a constant, which was 
sometimes derived from experimental data indirectly or assu-
med theoretically, and the relationship among the hazard rate, 
load, and strength cannot be embodied explicitly. In this paper, 
we develop a new method for modeling the dynamic reliability 
of systems, and study the behaviors of reliability and the hazard 
rate of systems as functions of time.

2. Reliability models of systems with common cause failure

In this section, through introduction of the conditional re-
liability, the reliability models of systems with CCF, are de-
veloped with the load-strength interference (LSI) model at the 
system level.

The LSI model has been applied widely for the calcula-
tion and analysis of reliability, when the cumulative distribu-
tion function (CDF) and probability density function (PDF) of 
strength δ are Fδ(δ) and fδ(δ), respectively, and the CDF and 
PDF of load s are Fs(s) and fs(s), respectively. The reliability 
under strength δ and load s can be expressed as

  (1)

Eq. (1) is usually used as the reliability model for compo-
nents, however, it can also be used to model the reliability of 
systems directly [30, 31].

Considering a special case that load s is deterministic, the 
reliability is the probability that the random strength exceeds 
the deterministic load. In this case, the failure of components 
in the system is independent, because the failure of each com-
ponent is completely determined by its own strength [15, 30]. 

The reliability when load is deterministic can be taken as the 
conditional reliability of systems.

For a system with n identical components, when load s is 
deterministic, the conditional reliability of the system can be 
expressed as

  (2)

  (3)

  (4)

Now we consider the case when load s  is a random varia-
ble with PDF fs(s), the reliability of systems can be written as

 (5)

 (6)

 (7)

Eqs. (5)- (7) are derived through the concept of conditional 
reliability and without the assumption that failures of compo-
nents are independent, and they have the capability of reflecting 
the effect of CCF on reliability.

3. System strength and its probability distribution

In this section, the structure of the reliability models of sys-
tems developed above is studied, and the PDFs and CDFs of 
strength of systems are derived.

According to Eqs. (5)-(7), the reliability models of systems 
can be unified as

  (8)

where Fe(δ) and fe(δ) are the CDF and PDF of system 
strength, respectively. For different system structures, they 
have different expressions, namely

For the series system, Fe(s) is

  (9)

For the parallel system, Fe(s) is

  (10)

For the k-out-of-n system, Fe(s) is 

  (11)

Obviously, Eq. (8) has the same structure as Eq. (1), in 
which Fδ(s) is the CDF of the strength of a component. Simi-
larly, Fδ(s)  in (8) can be regarded as the CDF of the strength of 
a system. Correspondingly, Eqs. (9)-(11) can be defined as the 
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CDF of strength of the series system, the parallel system, and 
the k-out-of-n system, respectively.

Further, the PDFs of system strength can be derived as

  (12)

  (13)

 (14)

As a special case, when n=1 and k=1, the CDF and PDF of 
system strength have the same expressions as those of a com-
ponent.

4. Reliability models of systems under random repeated load

During the service life of a system, loads experienced by 
the system are usually random and repetitive. The effect of the 
number of load applications on system reliability must be con-
sidered.

Eq. (1) is the well-known LSI model. However, it is not 
able to reflect the effect of the number of load applications. It 
can only be applied to calculate the reliability when the random 
load is applied once or for a specified number of applications 
[18, 29]. Similarly, Eqs. (5)-(7) cannot be used to calculate the 
reliability when random load is applied for an arbitrary number 
of times.

From the viewpoint of statistics, it can be regarded as 
extracting w samples of the random load when it is applied for 
w times. When strength degeneration is not obvious, and thus 
can be neglected, a system under these w load samples will su-
rvive all loads, if it does not fail under the maximum among 
these w load samples. The maximum load can be defined as the 
so-called equivalent load.

The maximum among these w times of load applications, is 
the largest order statistic, which is determined by the samples 

set ( 1 2, , , ws s s ) corresponding to these w times of load appli-
cations. Then, the CDF of the equivalent load is

  (15)

The PDF of the equivalent load is 

   (16)

Further, the reliability model of the system when random 
load is applied for w times, is expressed as

  (17)

Rewriting x as s in Eq. (17), we have

  (18)

Replacing fe(δ) in Eq. (18) with the PDF of system strength, 
we obtain the reliability models of different systems when load 
is applied for w times, as follows:

 (19)

 (20)

 (21)

In Eqs. (19)-(21), the number of load applications is embo-
died explicitly. Specially, if w=1, Eqs. (19)-(21) have the same 
expression as Eqs. (5)-(7), respectively.

5. Dynamic reliability model of systems

The Poisson stochastic process, as a counting process, can 
be applied to describe the relationship between the number of 
load applications and time [5]. When the loading process is de-
scribed as a Poisson stochastic process with {λ(t) > 0 (t ≥ 0)}, the 
probability of load having been applied for w times at time t, is

  (22)

where N(t) is the number of times that load has been applied 
by time t.

For each time load is applied, there are two characteristics 
of load, one is the time point when load appears, and the other 
is its magnitude. Here, the two-dimensional description is in-
troduced to describe these two characteristics of load. Namely, 
the Poisson stochastic process is applied to describe the rela-
tionship between the number of load applications and time, and 
the PDF is used to describe the characteristics of the magnitude 
of load.

Based on the two-dimensional description of the loading 
process, we develop the dynamic reliability models of systems 
first assuming that strength does not degenerate and then assu-
ming that strength degenerates in the following subsections. 

5.1. Dynamic reliability models of systems when strength does not 
degenerate

When strength does not degenerate, using Eq. (18) and Eq. 
(22), the reliability at time t  can be expressed as

 (23)

Using the Taylor expansion of the exponential function, Eq. 
(23) can be simplified as 

  (24)

Further, the hazard rate of the system h(t) when strength 
does not degenerate, is derived as

  (25)

The mean time to failure (MTTF) of the system, θ, when 
strength does not degenerate, is expressed as
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  (26)

Replacing fe(δ)  in Eq. (24) with its PDF of system strength 
respectively, the reliability models of systems when strength 
does not degenerate, are derived as

  (27)

  (28)

  (29)

Similarly, replacing fe(δ) in Eq. (25) with its PDF, respecti-
vely, the hazard rates of the series system, the parallel system, 
and the k-out-of-n system when strength does not degenerate, 
are expressed as

 (30)

 (31)

Replacing fe(δ) in Eq. (26) with its PDF, respectively, 
MTTFs of series system, parallel system, and k-out-of-n system 
when strength does not degenerate, are expressed as

 (33)

 (34)

 (35)

Take a series system with three identical components, the 
parallel system with three identical components, and the k-out-
of-n system with k=2, n=3 as examples. When λ(t)=0.5h-1, the 
strength of components follows the normal distribution with 
mean 600MPa and standard deviation 60MPa, and the load fol-
lows the normal distribution with mean 400MPa and standard 
deviation 40MPa, the reliability and the hazard rate of the sys-
tems when strength does not degenerate, are shown as Figs.1-4.

From Figs.1-4, it can be concluded that even if strength 
does not degenerate, the reliability of systems decreases as time 
goes. The hazard rate of systems also decreases over time. For 
systems with identical components, the hazard rate of the se-
ries system is the highest, and that of the parallel system the 
lowest. The hazard rate curves have the partial feature of a ba-
thtub curve, including only the initial failure period and the ran-
dom failure period, but not the wearout period. This is because 
strength degeneration is not considered.

5.2. Dynamic reliability model of systems when strength degenera-
tes

In the following, the dynamic reliability models of systems 
with strength degeneration are developed through differential 

equations.
According to Eqs. 

(12)-(14), it is known 
that system strength can 
be expressed as a func-
tion of the strengths of 
the components. Gene-

rally, component strength at time t is dependent on its initial 
strength and time t, therefore, system strength δt at time t can be 
written as a function of the initial strength δ and time t. When 
the loading process is describes as a Poison stochastic process, 
the probability that load appears in interval (t, t+Δt) is λ(t)Δt. 
Therefore, R(t+Δt) can be expressed as

  (32)

Fig. 2. Hazard rate curve of the series system (n=3) without strength 
degenerationFig. 1. Relationship between reliability of systems and time without 

strength degeneration
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 (36)

Here, δe(τ) can be expressed as a function of the initial 
strength d  and time t, therefore, Eq. (36) can be rewritten as 

  (37)

Divided by tΔ  and 0tΔ → , tt → , Eq. (37) yields

  (38)

Solving Eq. (38) yields

  (39)

Noting that  (0) 1R = , and  0C = , we get

  (40)

Generally, when the initial strength d  is random, the relia-
bility of systems with strength degeneration is

  (41)

Further, the hazard rate of systems with strength degene-
ration is

The MTTF of systems when strength degenerate, is expres-
sed as

  (43)

As a step of validation, if we now assume that strength does 
not degenerate, namely, Fs(δ, t) is independent of t, Eq. (41) and 
Eq. (24), Eq. (42) and Eq. (25), and Eq. (43) and Eq. (26), give 
the same expression, respectively.

Further, replacing fe(δ) in Eq. (41) with its PDF respective-
ly, the reliability models of series system, parallel system, and 
k/n system when strength degenerates, are derived as

  (44)

  (45)

  (46)

Similarly, replacing fe(δ) in Eq. (42) with its PDF, respecti-
vely, the hazard rate functions of series system, parallel system 
and k/n system with strength degeneration, are derived as

 (47)

 (48)

Fig. 3. Hazard rate curve of the parallel system (n=3) without strength 
degeneration

Fig. 4. Hazard rate curve of the k/n system (k=2, n=3) without strength 
degeneration

 (49)

  (42)
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Replacing fe(δ) in Eq. (43) with its PDF respectively, the 
MTTFs of series system, parallel system, and k-out-of-n system 
when strength degenerates, are expressed as

 (50)

 (51)

 (52)

As examples, consider the series system with three iden-
tical components, the parallel system with three identical 
components, and the k-out-of-n system with k=2, n=3. When 
λ(t)=0.5h-1, the strength of components follows the normal di-
stribution with mean 600MPa and standard deviation 60MPa, 
and the load follows the normal distribution with mean 400MPa 
and standard deviation 40MPa, and the strength degenerates as 
δt= δ e-0.00002t, the reliability and the hazard rates of the systems 
incorporating strength degeneration, are shown in Figs.5-8.

From Figs.5-8, it can be concluded that when strength de-
generates, reliability of system decreases over time more rapi-
dly, and the hazard rate curves of systems are bathtub-shaped.

Fig. 5. Relationship between system reliability and time with strength 
degeneration

Fig. 6. Hazard rate curve of the series system (n=3) with strength de-
generation

Fig. 7. Hazard rate curve of the parallel system (n=3) with strength 
degeneration

Fig. 8. Hazard rate curve of the k/n system (k=2, n=3) with strength 
degeneration

Fig. 9. Application of the hazard rate curve of systems
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If we are given a maximum acceptable hazard rate value h*, 
the early failure duration T1, the random failure duration T2 and 
the wearout failure duration T3, can be distinguished objectively 
using the models proposed, as shown in Fig. 9. Further, we can 
use this information to make decision on burn-in duration, the 
reliable operation life, and maintenance schedule.

6. Conclusion

In this paper, a new method is developed for modeling 
dynamic reliability of systems and the mathematical function 
of reliability and hazard rate of systems are presented. First, 
through applying the load-strength interference model at the 
system level, the reliability models of systems are derived, and 
the CDFs and PDFs of strength for different systems are de-
veloped. Then, the reliability models of systems when random 
load is applied for multiple times are developed with order sta-
tistics. Based on the loading process described as the Poisson 

stochastic process, the dynamic reliability models of the series 
system, the parallel system and the k-out-of-n system without 
strength degeneration, and those with strength degeneration, 
are developed, respectively. Further, the relationship between 
system reliability and time, and the hazard rate of systems are 
discussed in different cases. The results show that, even when 
strength does not degenerate, the reliability of systems decre-
ases as time goes, and the hazard rate decreases over time, too. 
When strength degenerates, the reliability decreases more rapi-
dly over time, and the hazard rate curves are bathtub-shaped.

As long as the probability distributions of load and strength 
and the rule of strength degeneration are known, reliability and 
hazard rate of systems can be calculated by the models propo-
sed, which can be used to distinguish the early failure period, 
the random failure period, and the wearout failure period. It is 
helpful for the life cycle management of systems.
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