PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hybrydowy algorytm wzajemnej entropii do oceny niezawodności systemów typu konfiguracja-redundancja

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
A hybrid cross-entropy algorithm for reliability assessment of confi guration-redundancy system
Języki publikacji
EN
Abstrakty
EN
Engineering practices with various redundancies increase the availability of a system as well as complexity which bring the uncertainty of reliability estimation and failure detection of system components. Under such conditions, a confi gurationredundancy system is studied and the reliability function of the system is formulated. When no prior failure of system components is available, failure problem of system is a stochastic shortest path problem. Meanwhile to eliminate the uncertainty of system, it is necessary to detect failures series of components. The expected shortest path model and failure detecting model are proposed for system reliability optimization. The Cross-Entropy (CE) method is applied as a heuristic algorithm to estimate the system reliability and detect the failure of components. A stochastic sample generating approach is designed to obtain some valid samples. In order to improve the effi ciency of computing, a hybrid CE algorithm which combines the stochastic sample generating approach and the CE method is developed. Numerical results indicate potential improvements in reliability allocation of complex systems that would lead to the best performances of all system components.
PL
Stosowane w praktyce inżynieryjnej różnorakie redundancje zwiększają dostępność danego systemu zarazem powiększając jego złożoność, co czyni niepewnymi ocenę niezawodności i wykrywanie uszkodzeń komponentów systemu. Wobec powyższego, poddano badaniom system typu konfguracja-redundancja oraz sformułowano jego funkcję niezawodności. Kiedy niedostępna jest wiedza na temat poprzednich uszkodzeń komponentów systemu, problem uszkodzeń systemu ma charakter problemu stochastycznego. Tymczasem, aby wyeliminować niepewność systemu, konieczne jest wykrycie uszkodzeń w serii komponentów. Zaproponowano model przewidywanej najkrótszej ścieżki oraz model wykrywania uszkodzeń mające służyć optymalizacji niezawodności. Metodę wzajemnej entropii wykorzystano jako algorytm heurystyczny do oceny niezawodności systemu i wykrywania uszkodzeń komponentów. Zastosowane stochastyczne podejście do generowania próbek umożliwia otrzymanie ważnych próbek. W celu poprawienia wydajności obliczeniowej, stworzono hybrydowy algorytm wzajemnej entropii, który łączy w sobie stochastyczne podejście do generowania próbek i metodę wzajemnej entropii. Wyniki numeryczne wskazują na potencjalną poprawę alokacji niezawodności złożonych systemów, która prowadziłaby do jak najlepszego działania wszystkich komponentów systemu.
Rocznik
Tom
Strony
4--13
Opis fizyczny
Bibliogr. 43 poz.
Twórcy
autor
autor
autor
  • School of Mechatronics Engineering, University of Electronic Science and Technology of China Chengdu, Sichuan, 610054, P. R. China, hzhuang@uestc.edu.cn
Bibliografia
  • 1. Amato F, Cosentino C, Mattei M, et al. A direct/functional redundancy scheme for fault detection and isolation on an aircraft. Aerospace Science and Technology 2006; 10(4): 338-345.
  • 2. Biernat J. Discussion of compensating faults in modeling of NMR system reliability. Reliability Engineering & System Safety 1995; 47(3): 221-228.
  • 3. Biernat J. The effect of compensating faults models on NMR system reliability. IEEE Transactions on Reliability 1994; 43(2): 294-300.
  • 4. Blanke M, Thomsen J S. Electrical steering of vehicles - fault-tolerant analysis and design. Microelectronics and Reliability 2006; 46: 1421-1432.
  • 5. Chern M S. On the computational complexity of reliability redundancy allocation in a series system. Operations Research Letters 1992; 11(5): 309-315.
  • 6. Cohen I, Golany B, Shtub A. Resource allocation in stochastic, finite-capacity, multi-project systems through the cross entropy methodology. Journal of Scheduling 2007; 10(3): 181-193.
  • 7. Coit D W, Smith A E. Solving the redundancy allocation problem using a combined neural network/genetic algorithm approach. Computers & Operations Research 1996; 23(6): 515-526.
  • 8. de-Boer P, Kroese D, Mannor S, et al. A Tutorial on the Cross-Entropy Method. Annals of Operations Research 2005; 134(1): 19-67.
  • 9. Dobson I, Carreras B A, Newman D E. A probabilistic loading-dependent model of cascading failure and possible implications for blackouts. Proceedings of the 36th Annual Hawaii International Conference on System Sciences. Hawaii, 2003.
  • 10. Doles J, Cook C, Shi X, et al. Functional compensation in Hedgehog signaling during mouse prostate development. Developmental Biology 2006; 295(1): 13-25.
  • 11. Ge T. Concept of confi guration redundancy and integrated evaluation and disposition of redundancy in sensor systems. Acta Automatica Sinica 2003; 29(2): 181-189.
  • 12. Gen M, Yun Y S. Soft computing approach for reliability optimization: State-of-the-art survey. Reliability Engineering & System Safety 2006; 91(9): 1008-1026.
  • 13. Ha C, Kuo W. Reliability redundancy allocation: An improved realization for nonconvex nonlinear programming problems. European Journal of Operational Research 2006; 171(1): 24-38.
  • 14. Jain N K, Jain V K, Deb K. Optimization of process parameters of mechanical type advanced machining processes using genetic algorithms. International Journal of Machine Tools and Manufacture 2007; 47(6): 900-919.
  • 15. Karayiannis N B, Nagabhushan K S. An entropy-constrained algorithm for routing of communication networks. Computer Communications 2006; 29(16): 3182-3196.
  • 16. Kleijnen J P, Rubinstein R Y. Optimization and sensitivity analysis of computer simulation models by the score function method. European Journal of Operational Research 1996; 88(3): 413-427.
  • 17. Kokcharov I. Failure probability assessment of parallel redundant structures. Theoretical and Applied Fracture Mechanics 2001; 36(2): 109-114.
  • 18. Kroese D P, Rubinstein R Y. The transform likelihood ratio method for rare event simulation with heavy tails. Queueing Systems 2004; 46(3): 317-351.
  • 19. Kumar R, Izui K, et al. Optimal modular redundancy using hierarchical genetic algorithms. Reliability and Maintainability Symposium 2007: 398-404.
  • 20. Kuo W, Wan R. Recent advances in optimal reliability allocation. IEEE Transactions on Man and Cybernetics, Part A, systems and humans 2007; 37(2):143-156.
  • 21. Levitin G, Lisnianski A. Joint redundancy and maintenance optimization for multistate series-parallel systems. Reliability Engineering & System Safety 1999; 64(1): 33-42.
  • 22. Liang Y C, Chen Y C. Redundancy allocation of series-parallel systems using a variable neighborhood search algorithm. Reliability Engineering & System Safety 2007; 92(3): 323-331.
  • 23. Lisnianski A, Levitin G, Ben-haim H. Structure optimization of multi-state system with time redundancy. Reliability Engineering & System Safety 2000; 67(2): 103-112.
  • 24. Murthy D N, Iskandar B P. A new shock damage model: Part I--Model formulation and analysis. Reliability Engineering & System Safety 1991; 31(2): 191-208.
  • 25. Murthy D N, Iskandar B P. Reply to vesely's comments on a new shock damage model: Part I--Model formulation and analysis. Reliability Engineering & System Safety 1991; 31(2): 210-208.
  • 26. Murthy D N, Iskandar B P. A new shock damage model: Part II--Optimal maintenance policies. Reliability Engineering & System Safety 1991; 31(2): 211-231.
  • 27. Murthy D N, Iskandar B P. Reply to vesely's comments on a new shock damage model: Part II--Optimal maintenance policies. Reliability Engineering & System Safety 1991; 31(2): 236-237.
  • 28. Nahas N, Nourelfath M, Ait-kadi D. Coupling ant colony and the degraded ceiling algorithm for the redundancy allocation problem of series-parallel systems. Reliability Engineering & System Safety 2007; 92(2): 211-222.
  • 29. Nariai S, Hui K P, Kroese D P. Designing an optimal network using the cross-entropy method. Lecture Notes in Computer Scence 2005; 3578: 228-233.
  • 30. Qu L, Li L, Lee J. Enhanced diagnostic certainty using information entropy theory. Advanced Engineering Informatics Inteligent Maintenance Systems 2003; 17: 141-150.
  • 31. Rubinstein R Y, Kroese D P. The Cross-Entropy Method. NY: Springer-Verlag, 2004.
  • 32. Rubinstein R Y, Shapiro A. Optimization of static simulation models by the score function method. Mathematics and Computers in Simulation 1990; 32(4): 373-392.
  • 33. Rubinstein R Y. The score function approach for sensitivity analysis of computer simulation models. Mathematics and Computers in Simulation 1986; 28(5): 351-379.
  • 34. Rubinstein R Y. Optimization of computer simulation models with rare events. European Journal of Operational Research 1997; 99(1): 89-112.
  • 35. Setzkorn C, Taktak A F, Damato B E. On the use of multi-objective evolutionary algorithms for survival analysis. Biosystems 2007; 87(1): 31-48.
  • 36. Tavakkoli-moghaddam R, Safari J, Sassani F. Reliability optimization of series-parallel systems with a choice of redundancy strategies using a genetic algorithm. Reliability Engineering & System Safety 2008; 93(4): 550-556.
  • 37. Tian Z, Zuo M, Huang H Z. Optimal redundancy allocation of multi-state systems with genetic algorithms. Computational Intelligence in Reliability Engineering. Heidelberg: Springer, 2007.
  • 38. Vasilakos A V, Paximadis G T. Fault-tolerant routing algorithms using estimator discretized learning automata for high-speed packet-switched networks. IEEE Transactions on Reliability 1994; 43(4): 582-593.
  • 39. Wasiewicz P, Leszczynski M. Design station for fault tolerant control systems. Problemy Eksploatacji 2006; 2: 99-111
  • 40. Wu J, Chen R. Effi cient algorithms for k-out-of-n and consecutive-weighted-k-out-of-n: F system. IEEE Transactions on Reliability 1994; 43(4): 650-655.
  • 41. Yin P Y, Yu S S, Wang P P, et al. Task allocation for maximizing reliability of a distributed system using hybrid particle swarm optimization. Journal of Systems and Software 2007; 80(5): 724-735.
  • 42. Yun W Y, Kim J W. Multi-level redundancy optimization in series systems. Computers & Industrial Engineering 2004; 46(2): 337-346.
  • 43. Zhang T, Xie M, Horigome M. Availability and reliability of k-out-of-(M+N): G warm standby systems. Reliability Engineering & System Safety 2006; 91(4): 381-387.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT1-0033-0029
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.