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PARTICLE SWARM OPTIMIZATION FUZZY SYSTEMS FOR THE AGE 
REDUCTION IMPERFECT MAINTENANCE MODEL 

This research includes two topics: (1) the modeling of periodic preventive maintenance policies over an infi nite time 
span for repairable systems with the reduction of the degradation rate after performing an imperfect preventive ma-
intenance (PM) activity; (2) the parameter estimation of failure distribution and the restoration effect of PM from the 
proposed PM policy for deteriorating systems. The concept of the improvement factor method is applied to measure the 
restoration effect on the degradation rate for a system after each PM. An improvement factor is presented as a function 
of the system’s age and the cost of each PM. A periodic PM model is then developed. The optimal PM interval and the 
optimal replacement time for the proposed model can be obtained by minimizing the objective functions of the cost 
rate through the algorithms provided by this research. An example of using Weibull failure distribution is provided to 
investigate the proposed model. The method is proposed to estimate the parameters of the failure process and the im-
provement effect after each PM by analyzing maintenance and failure log data. In this method, a PSO-based method is 
proposed for automatically constructing a fuzzy system with an appropriate number of rules to approach the identifi ed 
system. In the PSO-based method, each individual in the population is constructed to determine the number of fuzzy 
rules and the premise part of the fuzzy system, and then the recursive least-squares method is used to determine the con-
sequent part of the fuzzy system constructed by the corresponding individual. Consequently, an individual corresponds 
to a fuzzy system. Subsequently, a fi tness function is defi ned to guide the searching procedure to select an appropriate 
fuzzy system with the desired performance. Finally, two identifi cation problems of nonlinear systems are utilized to 
illustrate the effectiveness of the proposed method for fuzzy modeling. 

Keywords: imperfect maintenance, preventive maintenance, reliability, fuzzy modeling, particle 
swarm optimization. 

1. Introduction 

It has been shown that performing PM activities can yield 
the restoration effect for a deteriorating system to the states be-
tween as good as new and as bad as old (Pham and Wang, 
1996). Fuzzy modeling is a popular branch of system identifi ca-
tion for constructing a fuzzy model to explain the behavior of 
an identifi ed system described by a set of input-output data. The 
constructed fuzzy model is a rule-based system consisting of 
a set of fuzzy rules. Nakagawa (1979) has presented a model to 
describe the age reduction effects when the PM activity is per-
formed for a system. Chan and Shaw (1993) have studied the 
modeling of the hazard rate restoration after performing a PM 
activity. Most of the PM models shown in the literature assume 
that the restoration effect of PM is occurred on the age or the 
hazard rate of the system. However, Canfi eld (1986) has propo-
sed a model by assuming that the PM activity can only relieve 
stress temporarily and hence slow the rate of system degrada-
tion while the hazard rate is still monotonically increased. Park 
et al. (2000) has extended Canfi eld’s model to determine the 
optimal PM policy. Malik (1979) has proposed the improve-
ment factor method to measure the restoration effect for a dete-
riorating system after performing the PM activities. The propo-
sed method considers that the imperfect PM activity can reduce 
a system’s age from t to t/β, where β is the improvement factor, 
and can result in restoring the system’s reliability to R(t/β) from 
R(t). Lie and Chun (1986) have developed an improvement fac-
tor to measure the restoration effect, which is affected by the 
PM cost and the system’s actual age. Jayabalan and Chaudhuri 
(1992b) have also applied the improvement factor method to 
investigate the age restoration of a system after performing the 
PM activities. These PM models with using the improvement 

factor method assume that the improvement factor is a constant. 
However, Lie and Chun (1986) have considered the improve-
ment factor as a variable for the PM model. Yet, some parame-
ters are not well defi ned in the proposed improvement factor. In 
fact, the restoration effect can be affected by several factors 
after performing the PM activities, such as, system’s age (or 
operating time), the interval of the PM, and the cost of each PM 
activity. Cheng and Chen (2003) proposed an improvement fac-
tor to measure the restoration effect, which is affected by the 
system’s age and the cost of each PM. Yang et al. (2003) have 
proposed a similar improvement factor which is a function of 
the number of PM performed and the cost of each PM. Litera-
ture survey has shown that many PM models have been develo-
ped for the deteriorating and repairable systems. Typically, the-
se models are to determine the optimal interval between PM 
activities and the number of PM before replacing the system by 
minimizing the expected average cost over a fi nite or infi nite 
time span. Nakagawa (1986) has presented periodic and sequ-
ential PM models with minimal repair at each failure for the 
repairable systems and provided the optimal policies by mini-
mizing the expected cost rates. Jayabalan and Chaudhuri 
(1992a) have proposed a PM model with assured reliability to 
determine the optimal maintenance interval for a system by mi-
nimizing the total cost over a fi nite time horizon. Park et al. 
(2000) developed a periodic maintenance policy for the deterio-
rating systems with degradation rate restoration assumption. 
However, the existing optimal PM models do not include the 
study of statistical analysis for the real historical failure and 
maintenance data. Few researches have been devoted to estima-
ting the parameters of the failure process and the restoration 
effect after each PM activity. Traditionally, there are two types 
of assumption for the statistical analysis of the failure data, i.e., 



29MAINTENANCE AND RELIABILITY NR 4/2008

SCIENCE AND TECHNOLOGY

the state of a system after performing a PM activity is assumed 
to be as good as new (GAN) or as bad as old (BAO). In general, 
the failure process of a PM model belongs to the stochastic po-
int process. Hence, the assumptions of the GAN state and the 
BAO state are corresponding to the renewal process and the 
non-homogeneous Poisson process (NHPP), respectively. It is 
noticed that the estimation methods for the failure data with the 
above assumptions are well developed. However, both of the 
above assumptions do not include the case of the imperfect ma-
intenance which usually improves the system’s state to the level 
between GAN and BAO. In this paper, a periodic PM model 
over an infi nite time span is proposed for the deteriorating sys-
tems with the assumption of restoring system’s degradation rate 
after each PM activity. The improvement factor developed by 
Yang et al. (2003) is applied in this research to measure the re-
storation effect on the degradation rate of a system after each 
PM activity. In recent years, many systematic approaches for 
fuzzy modeling are implemented to automatically generate fuz-
zy rules from a given input-output data. In order to generate 
fuzzy rules from the given input-output data, fuzzy partitions in 
the input space are generally considered to determine the pre-
mise part of a fuzzy system. The grid-type and scatter-type fuz-
zy partitions for the input space have been often used to model 
fuzzy systems for the identifi ed system. In J.S. Roger Jang 
(1993), an adaptive grid partition in the input space was used to 
design the ANFIS-based fuzzy system. This approach takes the 
uniformly partitioned grid as the initial state. The grid evolves 
as the parameters in the premise membership function are adju-
sted. However, the adaptive grid partition scheme has the draw-
back that the number of fuzzy sets for each input variable is 
predetermined. In C.C. Wong and C.C. Chen (2000), a binary-
coded genetic algorithm (GA) is applied to determine an appro-
priate number of fuzzy sets for each input variable and the sha-
pes of membership functions associated with fuzzy sets for 
each input variable. However, in order to obtain accurate center 
positions of membership functions associated with fuzzy sets 
for each input variable, a long coded string associated with the 
individual must be used in the GA approach. Consequently, the 
generated fuzzy systems by the individuals maybe have an 
enormous number of fuzzy sets as the fi rst several generations 
so that the binary-coded GA approach takes a long training 
time. Besides, the above-mentioned approaches to the grid-type 
fuzzy partition of the input space still have two drawbacks as 
follows. As the number of dimensions increases, the number of 
fuzzy rules becomes enormous. Furthermore, they probably ge-
nerate dummy rules because of the lack of training data in the 
corresponding fuzzy regions. Instead of covering the whole in-
put space, the scatter-type fuzzy partition tries to fi nd a subset 
of the input space that characterizes the fuzzy regions of possi-
ble occurrence of the training data. Each fuzzy region maps the 
premise part of a fuzzy rule, which is associated with several 
membership functions. Several clustering techniques had been 
used to determine the premise part of the fuzzy system, such as 
fuzzy c-mean (FCM) algorithm M. Sugeno and T. Yasukawa 
(1993) and the ART-based method P.K. Simpson (1992). The 
basic idea is to group the input data into clusters and use one 
rule for one cluster. The number of fuzzy rules equals the num-
ber of clusters. In M. Sugeno and T. Yasukawa (1993), the FCM 
algorithm is applied to determine the premise part of the fuzzy 
system. However, the disadvantage of the FCM algorithm is 
that the number of clusters must be predetermined. That is, the 

number of fuzzy rules in the fuzzy system designed by the FCM 
algorithm must be predetermined. If the number of clusters is 
given, the clustering results of the FCM algorithm are also in-
fl uence by the choice of initial cluster centers and the distance 
measure. In P.K. Simpson (1992), a method for generating the 
hyperbox regions is proposed to determine the premise part of 
a fuzzy system for the identifi ed system. In this approach, the 
learning parameter is very critical, since it directly affects the 
number and position of the resulting hyperboxes. Consequen-
tly, the above-mentioned approaches to the scatter-type fuzzy 
partitions for the input space suffer from a high sensitivity of 
the accuracy with respect to the skill of the user to determine 
a predefi ned parameter for the number of rules. In this paper, 
a method based on the particle swarm optimization (PSO), cal-
led a PSO-based method, is proposed to automatically determi-
ne an appropriate number of fuzzy rules for the identifi ed sys-
tem. A fi tness function is designed to deal with the tradeoff 
between the number of rules and the approximation accuracy. 
In the PSO-based method, each individual corresponds a fuzzy 
system. The PSO is applied to determine an appropriate number 
of rules and the membership functions of the generated fuzzy 
system. Based on the guidance of the defi ned fi tness function, 
the fuzzy system corresponding to the individual will satisfy the 
desired objective as well as possible. Consequently, the selected 
fuzzy system has an appropriate number of rules and a small 
mean-squared error for the identifi ed system. An algorithm is 
proposed to obtain the optimal interval of each PM and the opti-
mal number of PM before replacement, which are determined 
by minimizing the cost rate. 

An example of Weibull failure distribution is given to con-
fi rm the proposed model. A sensitivity analysis for the para-
meters of the proposed model is also studied. Furthermore, an 
estimation method for the parameters of the hazard rate func-
tion and the improvement factor of the proposed PM model for 
the deteriorating and repairable systems is also developed in 
this research. The Particle swarm optimization (PSO) method 
is applied to develop the algorithms of parameter estimation. 
A numerical analysis method is applied to search the optimal 
values of the estimates. A Monte Carlo simulation is performed 
to study the accuracy and the properties of the estimates deve-
loped in the research. 

2. The PM model 

A periodic PM model is developed with applying the im-
provement factor provided by Yang et al. (2003). The assump-
tions, the improvement factor, the hazard rate function, the cost 
rate function, and the optimal solution algorithm for this PM 
model are presented as follows. 

2.1. The Assumptions 

The assumptions made for this PM model are as follows.
The system is deteriorating and repairable over time with  -
increasing failure rate (IFR).
The periodic PM activities with constant interval (h) are  -
performed over an infi nite time span.
The periodic PM activities can restore the degradation  -
rate of the system to a younger level, while the hazard rate 
keeps monotone increase.
Minimal repair is performed when failure occurs between  -
each PM.
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The system is replaced at the end of the N01 interval. -
The improvement factor method is applied to measure the  -
restoration effect on the degradation rate of the system.
The improvement factor of each PM is a variable which  -
is a function of the number of PM performed and the cost 
ratio1 of each PM.
The costs of PM, minimal repair, and replacement are as- -
sumed to be constant. The cost of PM and the cost of mi-
nimal repair are not greater than the cost of replacement.
The times to perform PM, minimal repair, and replace- -
ment are negligible.

2.2. The Improvement Factor 

The improvement factor applied in this paper is developed 
by Yang et al. (2003), which is assumed to be a function of the 
number of PM performed and the cost ratio of each PM. The 
function of this improvement factor is shown as follows. 

  (1)

where ηi 
represents the improvement factor of the ith

 PM, 
0 <

 
ηi < 1, Cpm 

is the cost of each PM, Cpr 
is the replacement 

cost of a system, a and b are the adjustment parameters for the 
improvement factor whose values are varied with different sys-
tem and can be determined by the system’s historical data or 
by experience. ηi = 0 and ηi 

= 1 are exclusive in this research 
since it can be seen that ηi = 0 means the age of a system after 
the PM remains the same as that before the PM (i.e., bad as old) 
and is called minimal repair; ηi 

= 1 means the PM is perfect 
and the system’s condition becomes as good as new. Parameter 
a is a cost adjustment coeffi cient and a < Cpr/ Cpm . It turns out 
that a Cpm/ Cpr< 1. Note that parameter a refl ects the effect of 
the PM cost ratio for different systems. Parameter b is an age 
adjustment coeffi cient and b > 0. It can be seen that the larger 
the i (i.e., the older the system), the smaller the ηi Moreover, 
the larger the PM cost ratio (Cpm/ Cpr), The cost ratio of each 
PM means the ratio of the cost per PM activity to the replace-
ment cost larger the ηi 

and thus the better the restoration of the 
system. 

2.3. The Effective Age 

The effective age at the time of the ith PM, can be 
shown in Equations (2) and (3) for prior- and posterior- 
PM, respectively.

  (2)

  (3)

where h is the periodic interval of PM. It is assumed that 
. The effective age at τ unit of time after 

the  thi PM can be presented as follows  

   (4)

2.4. The Hazard Rate Function 

For Weibull failure distribution with shape parameter 
β and scale parameter θ, the hazard rate function at time 
ith but prior to the ith PM is shown in Equations (5) and 
Equation (6) shows the hazard rate function for the time 
after the ith PM but prior to the (i + 1)th PM. 

  (5)

  (6)

2.5. The Cost Rate Function of the PM Model

 The cost rate function of the proposed PM model can 
be obtained as follows. 

  (7)

Where λ0(t) 
is the original hazard rate function? 

2.6. The Optimal Number of PMs and the Optimal Time to Repla-
cing a System 

2.6.1. The PM model without failure rate limit 

Based on the algorithm provided by Nakagawa (1986), the 
optimal solution of h can be obtained as function of N by taking 
partial derivative of h on C(h, N) and letting it equal zero. That 
is, 

  (8)

Thus, the periodic interval of PM of this model (h) can be 
obtained as 

  (9)

Then, the optimal number of PM and the optimal time 
interval between PMs can be obtained by the following 
algorithm. 

Let 1. N = 1, obtain h value using Equation (9) and cost 
rate (C(h, 1)) using Equation (7). 
Let 2. Cmin = C (h, 1). 
Let 3. N = N + 1. 
Obtain 4. h value using Equation (9) and calculate cost 
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rate (C(h, N)) using Equation (7). 
If C(5. h, N) < Cmin, then, Cmin = C(h, N) and return to 
Step 3, otherwise stop. 

2.6.2. The PM model with failure rate limit 

Suppose that the system has to be replaced when the re-
liability or failure rate reaches a certain level, say R* or λ*, re-
spectively. Let be the effective age of which the failure 
rate reaches λ*and the replacement is in the  PM. Then, we 
can obtain 

  (10)

Thus, the periodic interval of PM for this model (hR) can 
be found as                        

  (11)

Then, the optimal value of N, NR, can be determined so 
that
   C(hR,N), N=1,2,...  

3. Fuzzy System Structure 

When M input variables (x1, x2, ..., xm) and a single output 
variable are considered, a rule base of a fuzzy system can be 
expressed as follows:

j-th rule:
If x1is Aj1 

and x2is Aj2 
and…and xmis AjM

Then y is yj = aj0+ aj1X1+…+ ajMXM

J=1, 2,…, R

where R is the number of fuzzy rules in the rule base, 
Aji, j=1,2...,R,  i = 1,2,…,M are the fuzzy sets of the premise 
part, and aji, j=1,2...,R,  i = 0,1,…,M are the real numbers of the 
consequent part. In this paper, the membership function of the 
fuzzy set Aji is described by

  (12)

Where m(ji,1), m(ji,2) and m(ji,3)   determine the center position, 
the left and right width values of the membership function, 
respectively. Hence, the shape of the membership function is 
determined by a parameter vector   
The j-th fuzzy rule in the rule base is determined by a para-
meter vector . Consequently, the set 
of parameters in the premise part of the rule base is defi -
ned as . According to (1), the set of para-
meters in the consequent part of the rule base is defi ned as 

. When the input 
is given, the fi ring strength of the premise of 

the j-th rule is calculated by . By taking 

the weighted average of yj , the output of the fuzzy system with 
respect to the input can be determined by

  (13)

According to the above description, each parameter set 
consisting of the premise and consequent parameters determi-
nes a fuzzy system. Thus, different parameter sets determine 
different fuzzy systems so that the generated fuzzy systems 
have different performances. The goal of this paper is to fi nd 
an appropriate fuzzy system to approach an identifi ed system 
where only the input-output data are available. Therefore, the 
mean-squared error between the generated fuzzy system and 
the identifi ed system and the number of rules of the generated 
fuzzy system can be viewed as performance index. In the next 
section, the PSO-based method and the recursive least-squares 
method are applied to fi nd a fuzzy system with an appropriate 
number of fuzzy rules and a small mean-squared error for the 
identifi ed system. 

4. Identification of fuzzy systems using the PSO-based 
method 

The particle swarm optimization is an evolutionary com-
putation technique proposed by Kennedy and Eberhart S.J. Lee 
and C.S. Ouyang (2003)and J. Kennedy and R. Eberhart (1942-
1948). Its development was based on observations of the social 
behavior of animals such as bird fl ocking, fi sh schooling, and 
swarm theory. Like the GA, the PSO is initialized with a po-
pulation of random solutions. It requires only the information 
about the fi tness values of the individuals in the population. 
This differs from many optimization methods requiring the de-
rivation information or the complete knowledge of the problem 
structure and parameter. Compared with the GA, the PSO has 
memory so that the information of good solutions is retained 
by all individuals. Furthermore, it has constructive coopera-
tion between individuals, individuals in the population share 
information between them. In this paper, a PSO-based method 
is proposed to fi nd a fuzzy system with an appropriate num-
ber of fuzzy rules and have a small mean squared error for the 
identifi ed system. In the PSO-based method, each individual 
is represented to determine a fuzzy system. The individual is 
used to partition the input space so that the rule number and 
the premise part of the generated fuzzy system are determined. 
Subsequently, the recursive least-squares algorithm is applied 
to determine the parameters of the consequent part of the corre-
sponding fuzzy system. A set of individuals, P, called popula-
tion, is expressed in the following: 
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 (14)

In order to evolutionarily determine the parameters of the 
fuzzy system, the individual  contains two parameter vec-
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tors:  and . That is, . 

The parameter vector  consists of 
the premise parameters of the candidate fuzzy rules, where 
B is a user-defi ned positive integer to decide the maximum 
number of fuzzy rules in the rule base generated by the indi-
vidual . Here, is the parameter vector  
to determine the membership functions of the j-th fuzzy rule, 
where  is the parameter vector to 
determine the membership function for the i-th input variable. 
The parameter vector  is used to select 
the fuzzy rules from the candidate rules  
so that the fuzzy rule base is generated.  decides 
whether the j-th candidate rule  is added to the rule base 
of the generated fuzzy system or not. If    then the 
j-th candidate rule  is added to the rule base. Consequently, 
the total number of  whose value is greater 
than or equal to 0.5 is the number of fuzzy rules in the gener-
ated rule base. In order to generate the rule base, the index j 
of  whose value is greater than or equal to 
0.5 is defi ned as  where rh 

repre-
sents the number of the fuzzy rules in the generated rule base. 

 generates the premise part of the fuzzy 
rule base generated by the individual . Conse-
quently, the rule base of the generated fuzzy system is described 
as follows: 

r-th rule:
If 1x is h

I h
r

A 1 and 2x is h
I h

r
A 2 and…and mx is h

MI h
r

A ,

Then y is M
h
rM

h
r

h
r

h
r xaxaay +++= ...110

,,...,2,1 hrr =  

where  are the fuzzy sets of the generated r-th 
fuzzy rule. The membership function associated with the fuzzy 
set h

iI h
r

A  is described as follows: 

  (15)

Consequently, the individual  determines the premise 
part of the generated fuzzy system. Subsequently, the recursive 
least-squares method is applied to determine the parameters in 
the consequent part of the generated fuzzy system. According 
to the above description, each individual corresponds to a fuzzy 
system. In order to construct a fuzzy system which has a low 
number of fuzzy rules and a small mean-squared error simulta-
neously, the fi tness function is defi ned as follows:

  (16)

where fh is the fi tness value of the individual , g1( ) and 
g2 ( ), are defi ned respectively as follows: 

  (17)

and

  (18)

Here, σe and σr are user-defi ned constants for the fi tness 
function. Consequently, the fi tness function will guide the in-
dividual to fi nd a fuzzy system with a low number of rules and 
a small mean-squared error. In this way, as the fi tness function 
value increases as much as possible based on the guidance of 
the proposed fi tness function, the fuzzy system corresponding 
to the individual will satisfy the desired objective as well as 
possible. That is, the selected fuzzy system has a low number 
of rules and a small mean-squared error simultaneously. Subse-
quently, a PSO-based method is proposed to fi nd an appropriate 
individual so that the corresponding fuzzy system has the desi-
red performance. The procedure is described as follows: 

5. Numerical examples 

5.1. The Proposed PM Method 

From a numerical example with the following condi-
tions: Weibull (β = 10, θ = 100), Cpm= 10,000, Cmr= 50,000, 
Cpr= 5,000,000, a = 1, b = 0.001 and R* = 0.6.

In order to illustrate the usefulness of the proposed method, 
two identifi cation problems of nonlinear systems are discussed 
here. Example: Approaching a fi fth-order polynomial in this 
example, we use the proposed method to approximate a func-
tion with a fi fth-order polynomial as follows B. Kosko(1997), 
C.C. Wong and C.C. Chen,(2000): 

 (19) 

A total of 100 training input-output pairs and 100 check-
ing input-output pairs are sampled uniformly from the input 
ranges [-2,2] and [-1.95,1.95], respectively. Following the pro-
posed method, the simulation result is shown in Fig. 1, where 
the initial conditions for the proposed method in Example 1 
are given in the following: The number of individuals: L = 100 
, the maximum number of rules: B = 20 , the number of gen-
erations: K=100, the range of  
, the range of  , the 
range of , the constants 
for the fi tness function: {δe,δr}={0.15}  and the con-
stants for the PSO: {ψ,c1,c2,d1,d2}={1,1,1,0.75,0.75}. We 
can obtain the optimal solution of N* = 18, h* = 60.895, 
T =h*N* = 1096, and C(h*,N*) = 5241 for the case of no reli-
ability limit; NR= 18, hR = 48.769, T = hR NR = 878, and C(hR,NR

) 
= 5961 for the case of having reliability limit. 

The effects of Cpmand Cmr as well as of parameters a and b 
for the proposed models are shown in Tables 1 and 2. 

5.2. The experiments from a Monte Carlo simulation 

The length of the experiment (T) is 150 units of time. The 
PM interval, h, is 5 units of time. So, a total of 30 PM activities 
have been simulated. The input values of parameters are set to 
be: θ = 10; Cpm= 10,000; Cpr=5,000,000; a = 1; b = 0.01. The 
limits of computation error are set to be 5*10-3 and 20 for the 
maximum iteration. The inter-failure times generated from the 
Monte Carlo simulation are then used to calculate the estimates 
of parameters by employing the proposed method. The esti-
mates of parameters are obtained for β = 1.5, 2, and 2.5 as can 
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be seen in Table 2. The estimates are close to the input values 
and show small deviation for all parameters. 

The accuracy and precision of the estimates of parameters 
are also investigated for β = 1.5, 2, and 2.5. For each case of β, 
twenty sets of , , , and  are not affected by the changing 
of β. However, from Table 1,  it can be seen that the coeffi cients 
of variation , , , and  are decreased when β is increased. 
It is also found that the variation of the estimates is in the fol-
lowing order (from small to large) , , , and  for each β. 
On the other hand, for different β values, it is noticed that the 
smaller the β, the larger the variation of estimates. In Table 2, 
it is found that the larger the β, the more number of  are fall 
into the range of β± 5%. 

6. Conclusions 

From this research, two major results are obtained: (1) the 
periodic preventive maintenance policies over an infi nite time 
span for repairable systems with age reduction after performing 
an imperfect PM activity; (2) the estimates of parameters for 
the failure distribution and the restoration effect of the proposed 
PM model. In the proposed PM model, the optimal PM interval 
and the optimal replacement time are obtained by minimizing 
the objective functions of the cost rate through the algorithms 
provided by this research. 

A PSO-based method is proposed to construct a fuzzy sys-
tem direct from some gathered input-output data of the identi-

fi ed system. 
In the proposed approach, each individual consists of 

two parameter vectors:  and . The parameter vector  
is updated so that the generated fuzzy system has an appro-
priate number of rules. The parameter vector  is updated so 
that the premise part of the generated fuzzy system has appro-
priate membership functions for the identifi ed system. Then, 
the recursive least-squares method is applied to determine the 
consequent parameters of the corresponding fuzzy system. 
Consequently, each individual corresponds to a fuzzy system. 
Subsequently, a fi tness function is defi ned to guide the sear-
ching procedure to select a fuzzy system with the desired per-
formance. The simulation results for two nonlinear systems 
show that the selected fuzzy system not only approaches the 
identifi ed system well but also has an appropriate number of 
rules for the identifi ed system. 

The PSO-based method is employed in this research to fi nd 
the estimates of parameters for the hazard rate function and the 
improvement factor of a PM model. 

The numerical analysis, fuzzy system, is used to search the 
solution. It is found that the initial guess used for the fuzzy sys-
tem do not affect the obtained estimates of parameters. 

The simulation results have shown that βhas signifi cant ef-
fect on the variation of the estimates. The current computation 
algorithm is based on the complex equations; a simple and easy 
approximate estimation method should be developed. 

Tab. 1. The effect of Cpm and Cmr for the proposed models

Tab. 2. The effect of parameters a and b for the proposed models
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