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Summary: In thispaper the possibility of errorsin the measurement of average values (in
particular rmsvaluesor activepowers) in power systemsunder nonsinusoidal conditionsare
discussed. Theerrorsconsidered areeither duetothefact that themeasurement timeinterval
isnot an exact multipleof thefundamental period of thevoltageand current signals, or duetothe
presence of inter harmonicsor subharmonics. Theerrorsarecalculated and theresultsare

illustr ated by meansof smpleexamples.

1. INTRODUCTION

The ideal and idealized operation of an a.c. power system
corresponds to sinusoidal voltages and currents with a
frequency of 50 Hz or 60 Hz. However in real situations there
are deviations from this ideal case. The steady-state operation
of electrical loads containing power electronics devices gives
rise to current and/or voltage signals that feature a discrete
spectrum and can be periodic (with a period usually far longer
than 20 ms, which in the European Union corresponds to the
industrial frequency) or even non-periodic. Interesting
theoretical and technical issues must therefore be tackled in
the design and implementation of measurement systems for
the monitoring and diagnostics of the above equipments. In
the case in which the discrete spectrum signal features spectral
components not harmonically related each other, then it is
referred to as multi-tone signal. Furthermore, when some
spectral components are also non-commensurable with
respect to some others, then the signal is non periodic and
referred to as almost-periodic [1-5].

Let us consider an electric power system in a given state.
Once the spectral components of the voltage and current
signals are known, any quantity providing significant
information on the system properties and behavior can be
measured. This way, monitoring and diagnostics tasks can
be tackled. In the case of a periodic signal, the spectral
analysis can easily be performed by applying the Discrete
Fourier Transform (DFT) to a sequence of data acquired at
regular time intervals over a measurement interval multiple of
the signal period. If the signal is periodic, the sampling
process can be synchronous or asynchronous with the signal
period; as for the latter case, the acquisition process can also
be based on a random strategy. In this case, the sampling
frequency could even be lower than the signal frequency
(this turns into an equivalent time sampling). As the number
of processed samples increases, the estimates of the signal
spectral components converge to the actual ones. In the case
of quasi-periodic signals, or periodic multi-tone signals having

a period much greater than the measurement interval, the
requirements for the application of the DFT algorithm are not
met, given that the measurement time interval does not match
the requirement of being multiple of the signal period. This
leads to a significant distortion of the signal spectrum, due
to the presence of side lobes of the rectangular window
function representing the measurement time interval. This
way, the energy of the generic component resulting from the
DFT application is distributed over all the other components
determined. This effect is known as spectral leakage.

Several Digital Signal Processing (DSP) techniques, which
apply DFT algorithms to finite-length non-periodic sequences
of acquired data, have been proposed in the literature to
overcome this limitation [3, 14, 15, 16]. They can be grouped
into two main categories: windowing and statistical techniques.
Ifthe requirements of the sampling theorem are met, windowing
allows the reduction of the above limitations by multiplying
the digital signal with a non rectangular function which
exhibits low side-lobe levels. For instance the common
Hanning or Hamming windows fulfill the above characteristics.
When random sampling strategies are implemented, and
statistical techniques are used to process the acquired data,
the sampling instants must be properly chosen. These
methods, if compared to deterministic approaches, require
processing a much greater amount of data. However, statistical
approaches allow to overcome the sampling theorem and,
hence, to avoid aliasing and leakage [6].

In the present paper the measurement errors are analyzed
which are due to:

— the fact that the measurement interval is not an exact
multiple of the signal period for periodic signals,

— the presence of interharmonics which are the cause that
the signal is not exactly periodic.

In Section 3 the measurement of rms values and power is
discussed. General expressions for the errors introduced by
the above phenomena on the measurement of rms values
and of (average) powers are derived. The results are
illustrated by means of simple examples.
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2. DEFINITIONS OF RMS VALUE AND POWERS
AND THEIR IMPLEMENTATION

2.1. Definitions

International Standards endorse definitions and
prescriptions on how to measure rms values and active, non-
active and apparent powers in power systems with periodic
voltages and currents.

Let:

h

i= YT sin(hot +6,) @
h

with 4 =1, 2, 3,..., be the expressions of the voltage and
current in an electric system represented according to the
Fourier representation. In (1) o =27 f=27/T, with fand T the
fundamental frequency and period. V,, and [, represent the
amplitudes of the voltage and current spectral components,
Vi, =V, /+/2 and 1, =1,/ /2 their rms values. ¢, and 3,
their phase angles, and % the corresponding harmonic order.
The rms values of the voltage and the current are given by:

V2= %Tvzdt = Elvh2 )
m 9 h
and:
Tm
12 = ﬁv([izdt= ;Iﬁ (3)

In these expressions T, is the integration time, which
represents the signal observation or measurement time interval.
In the present case, it is assumed to be an integer multiple of
the fundamental period T of the current and voltage.

The apparent power is defined as:

® i > Current input
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conditioning block
v Voltage input || ||
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Fig.1. Schematic block diagram of a single-phase power meter

S=VI @)
and the active power as:
1 F
m o h

2.2. Architecture of the modern power meters

Figure 1 represents the single-phase schematic block
diagram of typical modern power meter. Voltage and current
analog conditioning blocks provide both suitable
amplification or attenuation of input signals and anti-aliasing
filters for being correctly acquired and converted by the
Sample & Hold device (S/H) and the analog to digital converter
(ADC) devices.

Usually the sampling frequency is less than 10 kSa/s per
channel for rms or power measurements. The analog-to-digital
converters feature a resolution of 12 to 16 bits. On-the-market
power meters feature generally different measurement
functions: rms values, powers, power factors (PF),
displacement factors (DF), flicker severity (PgT), harmonic
analysis, swells, sags, transients and so on. For transients
detection usually the sampling frequency rises up to some
MSa/s. The PLL block allows both the measurement time
interval to be set as multiple of the signal period and the
sampling frequency to be multiple of the fundamental
frequency in order to avoid leakage effect when calculating
all average quantities. According to [8] the PLL frequency
can feature an accuracy of 0.03% of the system frequency,
while instruments including a PLL shall meet the requirements
for accuracy and synchronisation for measuring at any signal
frequency within a range of at least 5% of the nominal system
frequency.

According to [9] the measurement time interval for rms
values must be a 10-cycle time interval for 50 Hz power
systems or a 12-cycle time interval for 60 Hz power systems.
The value of the measurement time interval is obtained by
performing the mean of the number of cycles over a 10s time
interval. This value is used for the derivation of all the average
quantities.

3. THE EFFECT OF THE MEASUREMENT TIME ON
RMS AND POWER MEASUREMENTS

The result of the measurement of physical quantities
performed by modern instrumentation can be affected by the
contribution of several sources of uncertainty. According to
the “Guide to the Expression of Uncertainty in
Measurements™ [10], two distinct evaluation types have to
be used for evaluating the uncertainty affecting a
measurement result: Type A and Type B evaluation. Each of
them takes into account distinct sources of uncertainty.
Hence both the evaluation methods must be implemented for
a complete knowledge of the uncertainty affecting a
measurement reading. As far as the Type A evaluation method
is concerned, it quantifies the contribution to the uncertainty
due to all the random contributions, like noise, disturbances,
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temperature, etc. This evaluation method requires a given
number of measurements to be obtained and is based on a
statistical analysis of the acquired data for characterizing the
uncertainty in terms of the standard deviation. As far as the
Type B evaluation mode is concerned, it uses the typical
indexes provided by the instrument’s manufacturer
(“%reading” and “%range”, “offset”) for evaluating the
relevant uncertainty contributions. The contributions
provided by both methods are to be added to obtain the so
called composite standard uncertainty. This uncertainty is
due to both the instrument limits and the interaction of the
instrument itself with the environment surrounding the test
bench.

In the measurement of average quantities, like rms values,
active, nonactive or apparent powers, further contributions
to the uncertainty affecting the measurement results can arise
from the lack of knowledge of the characteristics of the input
quantities or from a wrong setting of the instrument parameters
or from a non-ideal behavior of some devices. In such cases
the deviation of the measurement results from the right value
is not referred to as uncertainty but as error.

Two distinct error sources can be distinguished:

1. The measurement time interval is not exactly equal to a
multiple of the signal period. This can be due either to a
wrong instrument setting or to the uncertainty affecting
the PLL frequency. As reported in Section 1, such an
effect is referred to as spectral leakage.

2. The real signal period is not the inverse of the
fundamental frequency (50 Hz or 60 Hz) due to the
presence of interharmonics or subharmonics. In such a
case the actual signal period is indeed different from the
period corresponding to the fundamental frequency. The
inner PLL does not lock to the signal period, but it
continues to lock to the inverse of the frequency of 50
Hz or 60 Hz. As a consequence the instrument readings
swing.

In the sequel the analysis of the effect of such error sources
on the measurement of rms values and (average) powers is
presented and discussed.

3.1. Error on rms measurements

3.1.1. The measurement time interval is not an exact
multiple of the signal period.
Let us consider the simple case of a sinusoidal voltage

v(t) =V sin(wt) (6)

with V the peak value. In the case that the measurement
time T}, is not an exact multiple of the fundamental period
T = 27/w, the expression of the measured value of the square
of the rms voltage is:
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Fig. 2. Error %¢y on the rms value vs. the ratio 7,/T

The value of the error on the square of the rms value is:

02 Sln(Zme)
New =V doT, ®)
An approximation of the error on the rms voltage can be
obtained by developing (7) according to the Taylor series.
We obtain:

=J;\72(1 (v(

The (approximate) relative error with respect to the actual
rms voltage V is hence:

V,

meas

ZwT

sm(Zw m)
40T,

sin(2wT, )J

Vs =V 2
%, =100--=5 " 96 = ~100- sin C;m m) o
sin(4aT,/T) (10)
=-100-— > _—_—m "7 g
00 8T, /T &

Figure 2 plots the error, as given by (10), vs. the ratio
T,/T. The plot clearly shows that %e decreases if the ratio
T/T increases.

3.1.2. Nonharmonic components present in the signal.

Now we analyze the effect of the presence of a
nonharmonic component. For simplicity we assume that the
signal only contains a fundamental component and a
nonharmonic component:

v(t) =V sin(wt) +V, sin(swt + a) 11
where s is a non-integer which may be larger or smaller than
1.V is the peak value of the nonharmonic component. Under
the assumption that the measurement time interval 7, is
exactly a multiple of the fundamental period 7, T}, = m7, the
expression of the square of the voltage rms, is:
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The exact value of the square of the voltage rms value is:

r\2 V2
V2 _V_+_S
2 2

The measurement error is hence:

V2 sin(2a,) — sin(2swT,, + 2a,) o Sn[soTy—asJ+sing
2 2sw T, s (s-DwT,,
oy Sn[seTy +ag]-sinag V2 sin(sm2n)cos(sm2z + 2a,) ,
s (s+DwT, ) sm2n (13)
AN, sin[smz|cos s)ma +at | AN, sin[smvz |cos| s + o |
(s—-Dm2r (s+)m2x

From this expression the expression of the relative error can
readily be derived.

In practical situations the nonharmonic component may be
assumed to be much smaller than the fundamental component.
Then the relative error on the rms voltage may be approximated

by:

%e, 2100°5

2\/ sin(sm) cos(sm +ag)  sin(smr) cos(smr + ag
(s+I)m2r

]%(14)

(s—)m2n

Error [%]

Fig. 3. Error term vs. s

This expression shows that the largest error is obtained when
the nonharmonic frequency is close to the fundamental
frequency. Around s = 1 the relative error is approximately
given by:

VS
- cosag

To illustrate the measurement error, we consider the
numerical case where the peak value of the nonharmonic is
2% of the peak value of the fundamental (as typically occurs
in actual conditions, see e.g. [12]), and the measurement time
interval is 10 times the fundamental period (m = 10). Figure 3

T
= . not
4 We note

that the error reaches approximately the 2%, equal to the
relative amplitude of the nonharmonic component. It can be
seen also from (14) that the error is directly proportional to
the amplitude of the nonharmonic component.

plots the trend of %e,, vs. s for ¢, = 0 and s

3.2.  Error on power measurement

As in the case of the rms measurement, we separately
analyze the measurement error due to a measurement time
different from a multiple of the fundamental period 7'and the
measurement error due to the presence of inter- or
subharmonics. In both cases the relative error can be
expressed by the following index:

%e=1oo-Pm%578_P % (15)

with P the actual power, P, the measured power and S the
apparent power.
3.2.1. The measurement time is not an exact multiple of
the signal period.
For the sake of simplicity but without loss of generality,
let us assume that voltage and current are sinusoidal. Then
the expression of the measurement of the active power is:

P J.Vlsn(wt+a)sn(wt+/3)dt-

meas-l—

\QCOS(ﬁ a)- Vll_m[sin(Zme+a+ﬂ)—sin(a+ﬁ)]=(16)

VI
2

VI

cos(f—a) - sm(a)T Jeos(wT, +a+f)

The expression of the relative error, as defined by (15), is:

sin(4xT, /T+a+ ) - sm(a+ﬁ)

% = —100. AnT T

sin(2xT,,/T)cos(2xT,, /T+a+ﬁ) (17)

2nT, 1T

=-100-

Expression (17) shows that the relative error %e depends
on the phase angles of the voltage and the current and
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decreases as the measurement time 77, increases. The error
is obviously zero if the measurement time interval is a multiple
of the fundamental period. The error oscillates when T,
increases, and reaches maximal positive and negative values
in the vicinity of the measurement time intervals for which
4nT,, | T+atf is a multiple of 71/2. The largest positive and
negative errors are obtained if @+ have values corresponding

respectively to 2km+7 or 2kw—7. In these cases the

largest errors are obtained when the measurement interval
deviates from a multiple of the fundamental period by a quarter
of that period. Figure 4 shows a plot of the error for a+f
equal to 7t/2 (worst case — largest positive errors) and equal
to 0.

3.2.2. Non-harmonic components present in the voltage

and the current.

To analyze this case the following expressions are taken

for the voltage and current:

v(t) =V sin(ot + ) +V, sin(sot + )

. s - (18)
i(t)=1sin(wt+p) +l, sin(swt+ f)

where sw is the angular frequency of a non-harmonic
component of voltage and current of amplitudes V; and |
with phases o, and 3, respectively. In this case the expression
of the corresponding active power is:

Pmeas—%f Vi sin(ot+a)sin(wt+ f)dt +
0
Tm,\,\
%fVI sin(swt+ag)sin(wt+ 8 )dt +
m o

Vi, sin(ot+a)sin(sot+ B )dt +

+
3_| "‘
O’—.3_|
>

(19)

+Ti V.l sin(swt+¢; )sin(sot+ B )dt
m

O'—.3_|

Under the assumption that 7,, = kT, with k integer, the result is:

vi V. sin((s-1)oT,+as-B)-sin(as - p)
Preas = 5 cos(a - ﬂ)+7 (s-D)aT,
V.l sin((s+)oT,+as+B)-sin(as+p)
- +
2 (s+1)oT,
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Fig.4. Error %e vs. Tm/T with at+b = p/2 (worst case) and at+b = 0

35

3|

25

ol

15

1t

0.5

(0]

-0.51 -

L B

15 I I I I I I I I I
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Fig. 5. Error %e vs. s in the range [0-2]

The correct value of the active power is:

vi VAR

P= 5 ~--cos(a - 5

s_ﬁs)

From (20) it is clear that a measurement error occurs if the
measurement time interval is not a multiple of the period of the
interharmonic or subharmonic components. Let us assume that
the amplitudes of the voltage and current fundamental are
much larger than the amplitudes of the interharmonic of the
voltage and the current respectively. Taking into account that
wTis amultiple of 27z, the error can hence be approximated by:

%SleO_Pms—P 9% = 1ooV sin(swTy, +ag—B)-sin(ag - B) o
v (s-YoT,
V sn(swT,+ag+p)-sin(as+p)

-100—= %+
v (s+1)oT,

11008 |S sin(-so T, +a—-f)-sin(a-f;)
i (1-s)oT,

%- Q1)

sn(swT,+a+fs)-sin(a+fg)
(1+s)oT,

-100 IS
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Figure 5 shows the relative error for s in the range [0, 2], if
the interharmonics of the voltage is assumed to be 1% and 2
% of the corresponding fundamental components,
respectively, (as typically occurs in actual conditions, see
e.g. [12]), and if all phase angles are assumed to be zero. The
measurement time interval 7, is assumed to be equal to 107.
As in subsection 3.1.2 the largest error occurs when the
subharmonic or interharmonic has a frequency close to the
fundamental frequency. Then an error of approximately 3%
may occur if the subharmonics or interharmonics in the
current and the voltage are 2% and 1%, respectively, of the
fundamental components. As stated in Section 3.1.2 the error
is directly proportional to the sum of amplitudes of the
nonharmonic components.

4. CONCLUSIONS

This paper deals with the measurement of average values
(in particular rms values or active powers) in the case of
nonsinusoidal periodic voltage and current waveforms. It
was shown that errors can be introduced in these
measurements. It was pointed out that these errors may be
caused by two reasons:

1. A measurement error is introduced if the measurement
time interval is not an exact multiple of the fundamental
period of the voltage and current signals.

2. A measurement error may be due to the presence of
interharmonics or subharmonics in the voltage and/or
current signals.

The errors have been analyzed and explicitly calculated.
The results have been illustrated by means of simple
examples.

It is clear that the examples, which have been presented in
this paper, are simple cases. However they are sufficient to
show why and how the above measurement errors arise. In
the general case, with the presence of more harmonics,
interharmonics and subharmonics, the two sources of errors
simultaneously lead to measurement errors, caused by the
fundamental component and all other components and their
mutual interactions. The analysis of these more general cases
however does not yield essential new phenomena.
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