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Summary: Power related phenomenain three-phase, three-wir ecir cuitswith linear time-invariant
(LTI) loadssupplied with asymmetrical sinusoidal voltageareinvestigated in thispaper. The
study isbased on theconcept of the Currents Physical Component (CPC) power theory. Itis
shown that thesupply current of LTI loadswith sinusoidal asymmetrical voltage, asin thecase
of symmetrical voltage, iscomposed of only threephysical components, theactive, reactiveand
unbalanced currents. Consequently, loadsin such conditionscan bechar acterized by theactive,
reactiveand unbalanced power s. Theequivalent and unbalanced admittancesof three-phase
loadsat symmetrical supply voltagear econstant, independent on thesupply voltage, parameters.
Thepaper showsthat theseparameter sat asymmetrical supply depend on thevoltageasymmetry.

1. INTRODUCTION

The development of the power theory of circuits with
nonsinusoidal voltages and currents was focused in the XXth
century almost entirely on single-phase circuits with linear,
time-invariant (LTI) loads and on three-phase circuits with
balanced and unbalanced loads supplied with a symmetrical
voltage. Now, when the Currents’ Physical Components (CPC)
based power theory has explained the electric power related
phenomena in such circuits, is the time to extend the power
theory to circuits with asymmetrical supply voltage. Still
however the area of study has to be confined. It is confined
in this paper to three-phase, three-wire circuits with LTI loads,
meaning, four-wire circuits or circuits with harmonic
generating loads are not the subject of interest in this paper.

The voltage asymmetry in distribution systems is usually
a by-product of three-phase load imbalance which results in
line currents asymmetry. It occurs mainly at a junction of
single-phase and three-phase distribution systems as a result
of different loading of individual phases by single-phase
loads. In particular, high power loads that by their nature, like
electric trains, have to be single-phase loads, contribute to
distribution voltage asymmetry. Also, impedance asymmetry
of distribution line contributes to the asymmetry of the
distribution voltage. Voltage asymmetry occurs also when a
three-phase load is supplied from two single-phase
transformers, not connected in full A configuration.

It is well known that the voltage asymmetry in distribution
systems harmfully affects customer loads, in particular,
induction motors. The energy delivered to induction motors
by the negative sequence voltage is not converted to
mechanical energy, but to motor heat. This asymmetry also
affects ac/dc converters. In presence of such asymmetry,
non-characteristic harmonics occur in the converter supply
current. Therefore, the acceptable level of the distribution
voltage asymmetry is specified by various national standards
and confined usually to a few percent.

Power theory of such circuits should provide accurate
results independently on the level of the voltage asymmetry.
Therefore, in spite of the fact that the voltage asymmetry in
distribution systems is usually not higher than a few percents,

the study in this paper on such systems shall be carried out
without any limitations on the level of this asymmetry. Just
the opposite, it will be assumed in the numerical illustration
presented in Section 4 that it is much higher than the voltage
asymmetry in real systems. This shall enable emphasizing
various effects of the voltage asymmetry on the power related
phenomena in the circuits. At the level of voltage asymmetry
that can occur in real circuits these effects could not be visible
clearly enough.

The study in this paper is based on the concept of
symmetrical components, developed by Fortescue [1]in 1918,
and on the CPC based power theory of three-phase
unbalanced circuits [2, 3]. The study will be focused on power
related phenomena in three-phase, three-wire circuits with
asymmetrical but sinusoidal supply voltage. Comprehension
of power properties of circuits under sinusoidal conditions
is a necessity for any successful investigation of these
properties when voltages and currents are nonsinusoidal.
Moreover, it will be assumed that the supply voltage is
independent of the load current.

2. MAIN SYMBOLS

Three phase quantities such as voltages, ug, tg and ut or
line currents iy, ig and i, denoted by xg, xg and xp, can be
arranged into three-phase vectors:

Xq X
x2 | x | =2Re X, [ 2 2ReX e (1)
X X,

The scalar product of three-phase quantities a(¢) and y(7)
of the same period T is defined as:

T T
@) 2 T[2" O yOcdt=1[0rYe+XsYst Xyt (2)
0 0

where superscript T denotes a transposed matrix a(f). This
scalar product can be calculated in the frequency-domain as:
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(@.y)=Re( XY} 3)

where the asterisk denotes a conjugate number.
The rms value of a three-phase vector is defined as:

.
kil £ @) = |2 [x0-@0d =VX"X @
0

The last formula could be rearranged to the form:

el = VXTX = X2+ X2+ X2 =
5

= I [P+ [P+ 1P

thus, the rms value of a three-phase quantity is equal to the
root of the sum of squares of the rms value of phase quantities.

Three-phase sinusoidal quantities can be expressed as a
sum of the zero-sequence, %, positive sequence, aP, and
the negative sequence, &, symmetrical components, namely:

a=ar+ab +an (6)

The zero sequence component of voltages and currents
in three-wire systems does not contribute to energy flow and
consequently, will not occur in the following studies. The
positive sequence symmetrical components will be presented
in this paper in the form:

The complex rms (CRMS) values of the symmetrical
components, X%, XP and X" are defined as:

X? X2 11 17x,
XP| & | xp :%1 a o || X |2 8X (1)
X" XA 1ad alX

The scalar product of symmetrical components of the opposite
sequence, &P and a", is equal to zero, since:

@’ &™) =Re{ X" X"} =Re{ TP XP T X"} =

1
=Re{[1, &*,a]| & | XPX"} =Re{(1+a+a*) XPX"} =0
¢ (12)

thus such components are mutually orthogonal and
consequently, the rms value of the sum of the positive and
negative sequence components has the relationship:

le?+"|? = [P | + || (13)

3. CIRCUITS WITH BALANCED LOADS

Although the distribution voltage, e, can contain a zero
sequence component, €7, this component cannot contribute

Xg Xk to energy flow in three-wire systems. It means that the line-
aP 2 Xg — ﬁ Rel ' X g glot 2 \/E Re{ XP ejwlt} %) tg-artiﬁcial zero voltage, u, shown in Figure 1, but not the
o 0 line-to-ground voltage, e, should be considered as the load
Xt a Xg supply voltage. Thus the apparent power of the load should
be defined as:
where: §=ul] I (14)
b butnotas S 2 |le|| ||]|]. At such definition the power factor,
R 1 A= P/S, would be lower than its true value.
XPE|dXP|=|d [ XP2TPXP, o 2 1612 (3
aXP a ‘. w i
—- €p "‘ " i
Similarly, the negative sequence symmetrical component will e Is
be expressed in the form: 1 T“‘
o 78 T
:IIR 3R SR T '
n n
XR Xgr _ _ Ground Artificial ground
" 2| X |=V2Re| a X[ e 2 2Re{ X" /") (9)
n *on Fig. 1. Three-phase circuit
X7 a Xg
where: For the circuit shown in Figure 1 it holds:
X" n w'=0 wu=e", u'=e" (15)
X"2 aXf|=| a |[X"2T"X" (10) Let us suppose that the LTI load in the circuit shown in
@ Xn o Figure 1 is a balanced load. Usually it is a motor. In the USA
R power system approximately 2/3 of electric energy produced
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by power plants is used by motors.
Let us denote the motor phase admittance for the positive
and negative sequence voltage by:

Yr &2 GP+jBP yna GhjBe (16)

respectively, then, the load current is:
i=d"+i" =\2Re(TPIP et} + J2Re[ T " €l (17)

with:

[P=YyPUP, |"=y"u" (18)

The load active power can be expressed, due to orthogonality
of the opposite sequence components, in the form:

P=(a"+a", " +é") = (u®, ") + (2", 3") = PP+ P"(19)

where:

PP LGP, P AG" [P (20)
This result is rather trivial. It only shows that the load active
power is a sum of active powers associated with the positive
and negative sequence components of the load voltages and
currents. One should notice only that, in the case of motors,
the active power P! is not a useful power. The energy
transferred by the negative sequence voltage and current
component is entirely dissipated in the motor, thus it only
increases its temperature. Therefore, it would not be fair to
charge a customer for this energy. Just the opposite, the
energy provider should reimburse the customer for negative
effects of the supply voltage asymmetry.

Hllustration 1. To have an idea of the level of these two
powers, let us observe that a common, 220V, 100 kW, induction
motor at the rated speed has the phase admittance for the positive
and negative sequence voltage equal approximately to:

YP=06- j04=07e¥s @1

Y"=04- j13=14e™s 22)

Taking into account that G" < GP and that the active power
is proportional to the square of the supply voltage rms value,
thus at the level of the voltage asymmetry that is allowed by
standards, the power P" is only a minute part of the motor
active power. Observe however, that most of the power PP is
converted to mechanical power on the motor shaft, while
only a few percents of this power contribute to the motor
heating. Consequently, the share of the positive and negative
sequence voltages in the motor heating can be comparable.

Observe that the motor admittance for the negative
sequence voltage is higher than this admittance for the
positive sequence. Consequently, the motor current
asymmetry has to be higher than the supply voltage
asymmetry. Thus, due to the voltage drop on the distribution
system internal impedance, induction motors contribute to
an increase of the voltage asymmetry in such a system.

4. CIRCUITS WITH UNBALANCED LTI LOADS

Let us investigate power phenomena in the circuit with an
unbalanced load shown in Figure 2. This circuit could be
considered as an equivalent circuit of the supply of a
residential area, with mainly linear, single-phase loads.

e (/4 2
- G R"
R iR
Uy
—- 5
[ Ig
Uy
T
Zler i
T
ur
SR SR %R T
Ground Artificial ground

Fig. 2. Three-phase circuit with unbalanced LTI load

The vector of the line currents can be presented in the
form:

i=\2Re{1e*Y (23)

where the CRMS values of the line currents, i.e., the elements

of the vector /7 can be expressed as follows. The CRMS
value of the line R current in such a circuit is equal to:

lr=Yrs(Ur—Ug) — Y7 (Ur—Ug) (24)
and can be rearranged to the form:
I r=YeUr— (YstUr+ YrrUr+YrdUg) (25)
where:
Ye = Ge+ jBe =Yg+ Yrrt Ygs, (26)

is the equivalent admittance of the load, introduced to power
theory of three-phase systems in [2]. Similarly, the CRMS value
of the remaining line currents can be rearranged to the form:

ls=YeUg— (YgrUr+ YigUgt YraUR) 27

I+ =YeUr —(YgrUgt YorU g+ YreU7) (28)

If the following vectors of the voltage CRMS values are
denoted as:

Us [2U, |U; |2RU, |Ug |2 U, |ug|2SU
Us Usg Ug U;

29
then the vector of line current CRMS values can be expressed
in the form:

IR

I

(30)
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Fig. 3. Circuit with the equivalent balanced load

The upper front index in matrices RU, SUand T Y, indicates
the first coordinate of the vector, it means the CRMS value
Uy, Ut and Ug, respectively.

With respect to the active and reactive powers, P and O,
the original load can be equivalent to a balanced load shown
in Figure 3. The vector of CRMS values of the line current is
equal to:

I=Y,U 31)

The load in Figure 3 is equivalent to the load in Figure 2
with respect to the active and reactive power, if the complex
power at its terminal is equal to:

SEUTL =U"(Y,U) =Y, ||’ =P+]Q (32)
hence:
v, e PR s (33)
lleel”  leel

Since ¥}, is admittance of a balanced load, equivalent with
respect to the active and reactive powers, it will be referred to
as the equivalent balanced admittance.

Let us express the equivalent balanced admittance ¥, in
terms of the load line-to-line admittances, Ygg, ¥Yg and Ypg.
Since the active and reactive powers satisfy the balance
principle, thus, the conjugate value of the complex apparent
power of the load can be expressed as:

S £P-jQ = Srs+Ser + Srr (34)

The conjugate apparent power of the admittance Ygg can be
expressed as:

S:es = U;SYRSU RS = (U; _U;) Yrs(Ug —Ug) =
. (35)
= Yrs(Ug +US —2Re{UrUg})

Since:

U? = (-Ug —Ug)(-Ug -Ug) =UZ +US +2Re{UU¢},

thus: (36)

Sks = Yrs(QUA+2U2-UZ) = Yes(2lleel? -3U%) (37)

Similarly:

S;T = U;TYSTUST =Ygt (2”””2 _3UF2z ) (38)

Str =UtrYrrUrr = Yrr (2lle]” —3U3)

Thus the equivalent balanced admittance of the load can be
expressed in the form:

(39)

Y. & S _ SrstSsrt+Sr _
b~ 2 2 -
el el “0)

=2 _ﬁ(YST UZ+YrrUS+YRsU?) 2 YetYy

This result shows that the equivalent balanced admittance
Y, differs from the equivalent admittance Y, of the load by
term:

Y4 éYe_ﬁ(YST UZ+YrrUd+YrsUD) = Gy +1By(41)

Admittance Y4 can have a non-zero value only if, at the same
time, the load is unbalanced and the supply voltage is
asymmetrical. When the load is balanced, i.e.:

YRS:YTR:YRS:YG/3’ thenYd=0 (42)

independently on the supply voltage asymmetry. Similarly,
when the supply voltage is symmet-rical and consequently,
the rms values of phase voltages are mutually equal:

UR: US: UT, then Yd:(), (43)
independently on the load imbalance. Therefore, the
admittance Y4 will be referred to as the asymmetry dependent
admittance of three-phase loads.

Let us assume that the supply current ¢ of the original
load contains component &, proportional to the supply
voltage e and, at the same time, a minimum current of a
balanced load of the same active power P as the original
load. It is a component of the &, current that is in-phase with
the supply voltage, i.e.:

i 2 \2Re(l, €} = V2ReY, U "} (49)
If
Y, 2 G, +jB, (45)
then:
i, = J2G,Re{U €} =G, w (46)

The current &, is, of course, the active current of the original
load, since the scalar product of the supply voltage and this
current is equal to:

(e, ) = Gp lleel? = |joe]? = P

ulf 47
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The remaining component of the unbalanced current:

i, =2 B, Re{jUe”} = B, w(t+T/4) =

=—B,u(t-T/4) “8)
meaning, the current component shifted by 7/4 with respect
to the supply voltage, is the reactive current.

The active and reactive currents in circuits with
asymmetrical supply voltage, although formally identical with
these currents in circuits with loads supplied symmetrically,
have components dependent on the voltage asymmetry and
the load imbalance, since:

(49)
(50)

i, = Gyu= (G, +Gy)w
#, =—(B.+B,)ut-T/4)

Components proportional to the conductance G4 and
susceptance B, disappear when the supply voltage is
symmetrical or the load is balanced.

It can be assumed that supply current ¢ of the original
load contains the balanced current ¢, and a residual current:

i—i, =J2Re{(I-1,)e)Y} (51)

This residual component does not exist of course, when the
load is balanced thus, it can be associated with the load
imbalance and consequently, this component can be called
an unbalanced current, ¢,. Thus:

i, 2i-é,=2Re{1, &Y} (52)

where:
I 21— 1= (Yo -Y) U~ (Ysi" U + Y1 U +Yp V) =
=~ (Ysr WU + YR U +Yps ) - YU (53)
The vectors RU, SU and TU can be expressed in terms
of vectors of symmetrical components, &P* and U, where

index # denotes matrices with switched CRMS values Ug and
Ur, as follows:

Ug uP+u”
RU2|U; | = |aUP+a*U" | =UP*+U™  (54)
Us a*UP +aqU"
Us aUP +a*U"
W2\ Ug | = | a*UP+aU" | = UP*+a* U™ (55)
Ug uP+u"
Usg a*UP +aqU"
SU2\Ug =] UP+U" |=a* UP*+alU™ (56)
Ur aUP +a*u”

thus, the vector of the unbalanced current CRMS values can
be rearranged to the form:

1,2 (YT U + YT U + Yo U) - YU =

(57)
=APUP* L A"UM Y, UP+UT)
where:
AP 2 —(Ygr +a Yrg +a* Yrs) (58)
A" £ —(Ygr +a* Yrg +a Ygs) (59)

are unbalanced admittances of the load for the positive and
negative sequence voltages. Observe, that the unbalanced
current contains both positive and negative sequence
components, since the vector:

APUP* _y UM 2 1) (60)

is a vector of CRMS values of the supply currents of the
negative sequence, while the vector:

(61)

is a vector of CRMS values of the positive sequence
currents. Thus, the unbalanced current can be expressed
in the form:

# A
AU Y UP 21

iy =2Re{l, €'} =J2Re{(I] + 1) €'} =i{ +3] (62)

Taking into account that the balanced current &, is
composed of the active and reactive currents, the load current
of the original unbalanced load supplied from a source of
asymmetrical voltage can be decomposed into three
components:

i =d,+3 +q, (63)

This decomposition is formally identical with the
decomposition of the supply current of unbalanced loads
supplied with a symmetrical voltage. Also, definitions of
the current components are identical. However, mathematical
forms of these currents are much more complex now. Also,
it is not evident that these components are mutually
orthogonal. Let us verify orthogonality of these currents.

The active and reactive currents are orthogonal, because
according to their definitions, vectors of these two currents
are shifted mutually by 7z/2. Thus:

(@, 4)=Re(#] I} =Re{G, U (jB,U)} =0 (64)

Unfortunately, the proof of orthogonality of the unbalanced
current with the active and reactive ones is more complex. To
prove orthogonality of the balanced and unbalanced currents,
let us calculate the scalar product:

L.S. Czarnecki: Powers of Asymmetrically Supplied Loads in Terms of the CPC Power Theory

101



(i, iu) = Re( £ £} =Re{ /g 1.} =
=—Re{Y U (Ys;"U + Y1 U + YU + Y U)} =

= —Re{ Yp [Ygllull? +Ysr (U3 +2ReUgUr )+ (65)

+ Yrr (U3+2ReURUr) + Yps(U2+ 2ReUUg)]} =

= —Re[Y, ulP(Yg—Yg)} =0

thus, the balanced and unbalanced currents are mutually
orthogonal. Because the balanced current #, is composed of
the active and reactive currents, thus if the reactive current is
assumed to be zero, then we can conclude that the active and
unbalanced currents are orthogonal. When it is assumed that
the active current is zero, then we can conclude that the
reactive and unbalanced currents are orthogonal. Thus:

(@, ) = (85, 4,) = (@,4,)=0 (66)
and consequently, the rms value of the active, reactive and
unbalanced currents fulfills the relationship:

817 = NEalP + 1l 1P + lig, P (67)
In this equation:
iall = V31Ra = Gy e (68)
il = N3 1, = By | e (69)
Iyl = V31Ry =V3Y(18,)?+(15,)°  (70)

Multiplying this equation by the square of the supply
voltage vector rms value, |j#¢||2, we obtain the power equation
of unbalanced loads supplied with asymmetrical sinusoidal
voltage:

2 = P?2+ Q%+ D? (71)
with:
P = ] [léa]| = G, lleell® (72)
Q= lleel| 1| = — By, feel? (73)
D = |fee]] [le,l (74)

This power equation is identical with the power equation of
three-phase unbalanced loads with a symmetrical supply
voltage. Thus one might conclude that the supply voltage
asymmetry does not affect power properties of the three-
phase loads. These properties are still specified in terms of
three powers, it means the active, reactive and the unbalanced
power. However, when the load is unbalanced, each of these
three powers is affected by the voltage asymmetry. In
particular, the active power is:

P= Gyl = Go+Gy)llel? =R+Py (75
where Pg denotes the load active power at a symmetrical
supply voltage, but with the same rms value as the
asymmetrical supply voltage. The power P4 occurs because
of the supply voltage asymmetry, but it disappears,
independently of this asymmetry, when the load is balanced.
Similarly, the reactive power:

Q= —By llee]l* = (B + By) loe]* = Q, +Qy  (76)
where O, denotes the reactive power at a symmetrical supply
voltage, while the power Q4 occurs because of the supply
voltage asymmetry in presence of the load imbalance.
Illustration 2. Let us apply the presented analysis to the
three-phase circuit shown in Figure 4, with a single phase RL
load supplied through an ideal A/Y transformer, with the turn
ratio 1:1, from a source of a positive sequence voltage, but
with zero line-to-ground voltage at terminal S, assuming that
the CRMS value of the line-to-ground voltage at terminal R
and T are Eg = 100 V and E1= 100 €120V, respectively.

[
: ~

eR
S
[ i
" Ug s
Lo y
er I
SRSRSR || [¥T

Ground Avrtificial ground

Fig. 4. Example of a three-phase circuit

The load as observed from the supply source is equivalent
to a load in A configuration, with line-to-line admittances:

-1 ; — —

hence the equivalent admittance of symmetrically supplied
load is:

Yo = Go+ jBg = Yo+ Yyp+ Yes = 05— j05S

The artificial ground-to-ground voltage is:

Vo = %(ER +Eg) = %(100 +100e1%) = 33.33¢! v

thus, the CRMS values of the line-to-artificial ground voltages
at the transformer terminals are:

Ug= Ep-V, = 88.192¢ 119107 v/

Ug = Eq—V, =33.333¢ 11y

Us = E;—V, = 88.192e/13107 v/
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The rms value of the load voltage vector a is equal to:

el = JUZ+U2+U2 =129.10 v

The equivalent admittance of the load at asymmetrical supply
voltage is:

Y, =Gy+ By =Ye—ﬁ(\/gu§+\(TR U2+YpsU2) =

= 05-j05- 3
129.1

=-0.20+j0.20S

(0.5-j0.5) 88.191% =

The equivalent admittance of a balanced load is:
Yb = Gb"r JBb :Ye+Yd =
=(0.5-j0.5) + (-0.2+j0.2) =0.3-j0.3 S

hence, the rms value of the active and reactive current vectors:
lZ5]l = Gy, |leel] = 0.3x129.1 = 38.73 A

6,11 = By | lleell = 0.3x129.1= 38.73 A

To calculate the rms value of the unbalanced current vector,
¢, the load unbalanced admittances for the positive and the
negative sequence voltages, as well as the CRMS values of
these voltages have to be calculated. The admittances are
equal to:

AP= — (Yo +aYrp+a* Yra) = — a* Yps = 0.70761% S

n__ _ _ — j105°
A'= (YST +(f YTR +aYRs) - aYRS = 07076 S

while the load voltage symmetrical components have the
following CRMS values:

U? 88.192¢" 119107 0
UP = §| 33333¢ 11 66.66 |V
u" 88.192e/139107 | | 33.33¢ 167

With these values, the CRMS values of the unbalanced current
of the positive and negative sequence in line R can be
calculated:

IR, = A"UM —Y,UP = 21,60 11155 A

I8, = APUP —Y,U" =4320e/*" A

hence, the rms value of the unbalanced current vector is:

llé, 1l = /3 \/(| P+ (IR =+/3 \/21.602+ 43.20> =83.85 A

To verify this decomposition, let us observe that the root of
the sum of squares of the active, reactive and unbalanced
current vectors should be equal to the rms value of the supply
current vector, ||#]]. This value can be calculated directly when
the supply currents are known. Since the line current CRMS
values are:

_ 1 j45°
|r= ErYs =100, 5 = 7071 145

le=—1g =7071eB¥ A ;=0

thus, the rms value of the supply current vector is:

6l = 13+ 12+ 12 =100.0 A

At the same time:

811 = a2 +1d, P+l I? = /38.73 +38.73+83.657 =100.0 A.

This result verifies the correctness of decomposition of
the supply current into physical components, meaning, active,
reactive and unbalanced currents.

The active power:

P= Gy [leel* = R+ Ry

has a component independent of the supply voltage
asymmetry:

R = Ggllee|’ = 0.5x129.12 = 8.3 kW

but also a component dependent on this asymmetry:

Py= Gy lleel? = - 02x129.1% = -3.3kW

and consequently, the load active power is P = 5 kW. The
same applies to the reactive power, Q. At a symmetrical supply:

Qs = — By leell? = 0.5x129.1% = 8.3 kKVAr

The reactive power associated with the supply voltage
asymmetry:

Qq = —By llee]? = 0.2x129.7* = ~3.3kVAr

thus, the reactive power of the load has the value:

Q=Q,+Qy =50kVAr

The load unbalanced power is:

D = [lee]| ||é, ]| = 129.1x83.65=10.8 kVA

and hence, the apparent power S of the load is equal to:

S=/P?+Q%+D? =52+ 52 +10.8% =12.9kVA

The same value results from the apparent power definition:
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S = |jee]] |I£]] = 12.9 KVA

and this verifies the correctness of the apparent power S
decomposition into the active, reactive und unbalanced
powers, P, Qand D.

5. CONCLUSIONS

The analysis of power phenomena in three-phase circuits
with unbalanced LTI loads supplied with an asymmetrical
sinusoidal voltage shows that the supply current of such
loads, as in the case of symmetrical voltage, is composed of
only three physical components, the active, reactive and
unbalanced currents. Consequently, loads in such conditions
can be characterized by the active, reactive and unbalanced
powers. The equivalent and unbalanced admittances of three-
phase loads at symmetrical supply voltage are constant,
independent of the supply voltage, parameters. The paper
shows that these parameters at asymmetrical supply depend
on the voltage asymmetry, however.
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