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Summary: Theamplitudeand phasemodulation effectsof wavefor m distortion in power systems
areanalyzed. Recallson AmplitudeM odulation (AM) and PhaseM odulation (PM) ar egiven with
particular referenceto spectral components. Then, simpleinver seformulasareobtained to
demonstratethat summationsof oneor moresmall tonesfrequenciesto agiven toneof interest
can alwaysbeinterpreted intermsof AM and PM. Theusefulnessof AM and PM representation,
in particular inthepresenceof interharmonictones, isdemonstrated with r eferencetosimple

case-studiesand practical applications.

1. INTRODUCTION

Power system engineers are used to handling waveform
distortion problems by means of Fourier expansion [1]. The
presence of interharmonic components has introduced
important and new effects in terms of variations in waveform
periodicity. For this reason, an infinite frequency resolution
should be adopted and a fixed resolution of 5 Hz is suggested
by standards for industrial measurements [2]. A relatively
small amount of attention is devoted to the spectral
component phase angles in spite of their importance in
determining the peak value, the number of zero crossing
instants and the delay of the main zero crossing instants
with respect to those in sinusoidal conditions, as well as the
kind of modulations on the fundamental component.

Telecommunication engineers are used to handling
information transmission problems by means of proper carrier
tones that are modulated by the signal to be transmitted
through a given channel in a chosen vector. Among an
enormous variety of possible modulation techniques,
analogical modulations were the first to be used and include
Amplitude Modulation (AM) and Phase Modulation (PM)
[3]. Particular attention is devoted to the phase angles of the
signal’s spectral components.

The basic literature demonstrates the perfect equivalence
of AM and PM to the summation of sinusoidal tones of
proper amplitudes and phase angles.

In power system analysis, there is a tone of prevailing
interest, typically the fundamental component of voltage and
current. It is interesting to study the modulating effects
caused on this tone, considered as carrier tone, by one or
more interacting tone of lower amplitudes at different
frequencies with respect to it. The reason is related to the
consequences that appear in terms of voltage fluctuations,
flicker in lights, monitors, etc., malfunctions in power
electronic devices for energy conversion, active filtering etc.
and the inaccuracies introduced in the behavior of
instrumentation that needs to be synchronized with the
signals to be measured (PLL).

In this paper, it is demonstrated that the presence of
spectral components in the power system waveforms can
always be interpreted in terms of AM and PM of the
fundamental component or of another tone of particular

interest. This is obvious when the spectrum of the
components exactly corresponds to that of a given kind of
modulation; moreover, it is also demonstrated in the presence
of a single tone of spectral components that do not
correspond exactly to a single specific kind of modulation,
that there is a combination of two or more modulations. The
demonstration is obtained by deriving simple analytical
formulas that from a rigorous mathematical point of view
apply in the case of spectral components of very low values
compared to those of carrier tones, which is the real case
constituted by interharmonics.

On the other hand, the representation in terms of AM and
PM is necessary to gain a deep insight into the origins and
quantitative evaluations of very important interharmonic
effects, such as Light Flicker, measurement instrument
uncertainties, and the behavior of power electronic devices.

In what follows, AM and PM recalls are first given with
particular reference to spectral analysis. Then, simple inverse
formulas needed for the interpretation of signal distortion in
terms of AM, PM, and their combination are given. Finally, the
usefulness of AM and PM representation, in particular in the
presence of interharmonic tones, is demonstrated with
reference to simple theoretical case-studies and practical
applications.

2. RECALLS ON MODULATIONS

Some recalls on AM and PM are here reported with
reference to the simple case of sinusoidal carrier and
sinusoidal modulating signals. Reference is made to the
general representation of the modulated signal:

u(t)=U (t)-cos(Q(t) t+d(t)) (1)

where U(t) is the instantaneous amplitude, ®(¢) the
instantaneous phase angle, and €(¢) the instantaneous
angular frequency. In what follows, the case of unitary
magnitude and a null phase angle for the 50 Hz carrier is

considered without loss of generality.
2.1. Amplitude Modulation

The analytical expression of an AM signal is:
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u(t)= [1+ 2acos(Awt - <pi1)] -cos(wst) )

where w; is the carrier angular frequency, Aw is the
modulation angular frequency, 2a the modulation amplitude
and ¢;; is the phase angle of the modulating signal.

By means of the Prosthaphaeresis formulas, (2) is converted
nto:

u(t) = cos(wst) +acos| (v; - Aw)t+py |+

3
+acos| (w; +Aw)t—gp;; | )

which is a summation of three sinusoidal tones.

The time waveform, frequency spectrum, and phase angles
of an AM signal are shown in Figure 1. There are three spectral
components and the phase angles of the two modulating
components are opposite.

The instantaneous amplitude, the instantaneous phase
angle, the instantaneous angular frequency, and the RMS
over the effective signal period (100 ms) are respectively:
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Fig. 1. Time waveform, frequency spectrum and phase angles of an
AM signal
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Fig. 2. Time waveform, frequency spectrum, and phase angles of the
main components of a PM signal

U (t) =1+ 2acos(Awt—¢; )
®(t)=const.=0

Q(t)=const. =, @

RMS = %(1+ 2a2)

2.2. Phase Modulation

The analytical expression of a PM signal is:

u(t)= cos[a)lt +@yax - Cos(Awt + n/2—<pi1)] (5)

where w; and Aw are as in (2) and ¢,y is the index of
modulation that is the absolute value of the maximum phase
of the modulating signal and z/2—¢;; is its phase angle.
By expanding the outer cosine and manipulating as shown in
the Appendix for the case of 4y < 1, (5) is converted into:

u(t)= —So’%"—AX cos(wyt)+
© (1 4 ] ) ©

+V)""2Ax[l—(pz“’§‘xj{cos[(wl —Aw)t+py |+ cos] (o + Aw )t + - ¢i1]}+

+S"2Ng‘x(1—“’%“]{cos[(wl —280)t+2p;y |+ 00s[ (w1 + 2A0)t =29y [}+ .

which is a summation of infinite sinusoidal signals of proper
amplitudes and phase angles.

The time waveform, the frequency spectrum, and the phase
angles of the main components of a PM signal are shown in
Figure 2. The spectrum is rich in components and the two
main modulating component phase angles are each
complementary to 7.

The instantaneous amplitude, the instantaneous phase
angle, the instantaneous angular frequency, and the RMS
over the effective signal period (100 ms) are respectively:

u(t)=1
@ (t) = pyax - cos(Awt +7/2- ;)

Q(t) = w1~ Aw-pyax -Sin(Aot+7/2- ;) )

2 V¥ 2 2 V¥ 4 2
_ ||| 1_Pmax ‘pMAX( _ Puax ‘/)MAX( _ Puax _ [;
RMS_\/Z{[l 4 ] + > L1 ) J + 20 L1 o ] +l_ 5

2.3. Considerations

It is worthwhile to note that (3) and (6) demonstrate the
equivalence of AM and PM to the summation of sinusoidal
tones, respectively. As a consequence, the considered
modulations can always be handled in terms of spectral
components and, in the following sections, it will be
demonstrated that a summation of spectral components can
always be interpreted in terms of AM and PM.
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3. MODULATING EFFECTS ON A GIVEN TONE
CAUSED BY TONES AT DIFFERENT FREQUENCIES

Once assumed that there is a tone of prevailing interest,
typically the fundamental in power systems, it is interesting
to study the modulating effects caused on it by different
interacting tones of lower amplitudes at different frequencies.

In what follows, for the sake of clarity, we will first analyze
the case of a couple of minor tones of equal amplitudes at
symmetric frequencies, then a couple of minor tones of
different amplitudes at symmetric frequencies, and finally two
generic tones are analyzed.

Reference is, as in Section 2, to the case of a carrier tone of
unitary magnitude and null phase angle at the fundamental
power frequency, without loss of generality for the results.

3.1. Two superimposed tones of equal amplitudes at
symmetric frequencies

A carrier tone with a couple of superimposed tones of
equal amplitude and in symmetrical frequency positions with
respect to it (w;; = w—Aw and w;; = w;+Aw) can be
expressed as:

u(t) = cos(wyt)+a-cos| (w; — Aw)t+g;; |+
()

+a-cos| (0 +Aw)t+¢;, |

with a the amplitude of both tones and ¢;; and ¢, their
phase angles.

Pure Amplitude Modulation

When the two tones are characterized by ¢;;+ ¢, =0,
becomes exactly equal to (3) once substituted —p;; for g,

This demonstrates that these two tones produce a perfect
AM of the fundamental tone.

The instantaneous amplitude, phase angle, angular
frequency, and RMS are the same as reported in (4).

Prevailing Phase Modulation

When the two tones are characterized by ¢;;+ ¢ =",
(8) becomes:

u(t) = cos(wit)+a-cos((w, — Aw)t+ ¢y )+

)

+a-cos((w;, + Aw)t+x— ¢ )

which, after some mathematical manipulations deriving from
the general expression of the truncated Fourier expansion of
a perfect phase modulated signal, shown in the Appendix,
becomes:

u(t) = cos[a)lt +2a-cos(Awt + /2~ <pi1)} +

+a%[ 1+ cos(2Awt - 2p;; ) |cos(wyt ) (10)

where the first term represents a perfect phase modulated signal
of amplitude 1, modulation angular frequency Aw and
O aax = 2a; the second term represents a modulated signal of
amplitude a2 at angular frequency o ;, subject to a perfect AM
of unitary amplitude and modulation angular frequency 2Aw.

For a<<1, the first term is largely prevailing and (10) yields:

u(t) = cosf wt +2a-cos(Awt+7/2-py )| (11)

which is a perfect phase modulated signal.

The instantaneous amplitude, the instantaneous phase
angle, and the instantaneous angular frequency of (11) are
respectively:

U(t)=1
@ (t)=2a-cos(Awt+7/2-¢p;;) (122)
Q(t)=w, - Aw-2a-sn(Awt +7/2- ¢ )

It is worthwhile noting that the exact RMS value obtained
directly from (9) is:

RMS = l(1+ 2a2)

5 (12b)

which for a<<1 becomes equal to 1/v2.

3.2. Two superimposed tones of different amplitudes at
symmetric frequencies

The analytical expression of a carrier tone with a couple of
superimposed tones of different amplitudes in symmetrical
frequency positions with respect to it, is:

u(t) = cos(wyt)+a cos| (v — Aw)t+p;; |+
+8, COS| (@ + Aw)t+ ¢y, | (13)
A Single non Null Tone

When a,=0 and a;#0 or a;=0 and a,#0, a single non null
tone is present and (13) becomes:

u(t):cos(wlt)+aicos[(wl—Aw)H(pil] (14a)
or
u(t) = cos(w;t)+a, cos| (w; + Aw)t+p;, | (14b)

It is possible to demonstrate, as shown in the Appendix,
that:

u(t)= %[H 28, cos(Awt— ¢ ) |- cos(wit) +

(15a)
+%cos[wlt +2ay - cos(Awt +7/2- ;) |
or
u(t)= %[1+ 28, cos(Awt +¢;, ) |- cos(w,t) +
(15b)

+%cos[w1t +2a, - cos(Awt —7/2+ ¢, )]
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For both cases, the first term represents a modulated signal
of amplitude at angular frequency w1, subject to a perfect
AM of amplitude a; (or a,) and modulation angular frequency
Aw; the second term represents a perfect phase modulated
signal of amplitude , a modulation angular frequency
equal to Aw and an index of modulation equal to a; (or a5).

With reference, for the sake of simplicity, only to the case
where a,=0 and a;#0, the instantaneous amplitude, the
instantaneous phase angle, and the instantaneous angular
frequency are for the former, respectively:

U (t)=3+acos(Avt-py)

@(t)=0

(16a)
while for the latter:
u(t)=%
@ (t)=2a, -cos(Awt+7/2—¢p; ) (16b)
Q(t)=w,-Aw-2a -sin(Awt +7/2-¢;; )
The RMS value of (14a) is:
RMS = %(1+a12) (16¢)

Two non Null Tones
When in (13) a;#a,#0, two non null tones are present and
it is possible to demonstrate, as shown in the Appendix, that:

u(t)=

+%[1+ 28, Cos(Awt+¢;;) |cos(wyt)+

[1+2a, cos(Awt -y, ) |cos(wqt) +

NI

+%cos[wlt +2a; - cos(Awt + /2 <pi1)} + A7
+%cos[wlt +2a, - cos(Awt +7/2-¢p;, )]

where the first and the second terms represent signals of
amplitudes 0.25 at angular frequency w; subject to perfect
AM both of angular frequencies Aw and amplitudes a; and
a, respectively; the third and the fourth terms represent
signals of amplitudes 0.25 subjected to PM, both with
modulation angular frequencies Aw and indexes of modulation
a; and aj, respectively.

Generalization for N Superimposed

The general case of a fundamental signal with N
superimposed tones, is here considered:

u(t) = cos(wst)+ EN:an cos(wint + ¢y )

n=1

(18)

Once evidenced i) the effective pairs of tones having
symmetric distances from the fundamental angular frequency
N’ and ii) considering single components as N~ pairs with
one of the terms equal to zero, No = N’¢+ N”¢ pairs, with
N/2 = N¢ = N, can be referred to. So doing, it is possible to
write:

)

+ay, 08| (01— Aw, )+ ¢y, |+ @y, COS[ (01 + A0, )t + @iz, | }

It is worth noting that the N superimposed components
produce, in the most general case, N amplitude modulated
signals and N phase modulated signals, all of amplitude
1/2N).

Series of pairs of proper amplitudes and phase angles
correspond to typical cases of complex modulations as, for
instance, the square wave modulation.

4. CASE-STUDIES

The following case studies correspond to situations in
which only a modulation approach can allow a close look at
the phenomena and a correct assessment of their effects.

Obviously the modulation approach can be applied
regardless of the frequencies of the carrier and modulating
tones.

In what follows, reference is made to a carrier tone always
constituted by a fundamental (1.0 pu, 50.00 Hz and ¢ = 0)
and modulating tones constituted by harmonics (case-study
1) and interharmonics (case-studies 2 and 3). High values are
assumed for the modulating signals due to the need for clarity
in figure representation.

4.1. Case-study 1: single harmonic tone

A simple example consisting of a superimposed third
harmonic (0.3 pu, 150.00 Hz, 5 = 72/2) is considered.

Figure 3 shows the modulation approach analysis for this
case, which can be treated as a carrier tone consisting of the
fundamental and a modulating tone consisting of the harmonic
tone (see Subsection 3.2.1).

Figure 3.a shows the resulting signal compared with the
fundamental and Figure 3.b shows the amplitude modulated
part of the total signal (see first term of (15.b)), while Figure
3c shows the phase modulated part (see second term of (15.b)).

It is worthwhile noting that the AM determines the increase
(more generally, the modification) of the peak value of the
distorted signal with respect to that of the fundamental, while
the PM reflects the delay (more generally, the modification)
of the zero crossing instants of the distorted signal, without
affecting the periodicity.

In the general case of distortion caused only by harmonic
components, it seems that the information added by the
modulation representation is not of particular interest,
because the signal periodicity does not change and the RMS
values are easy to estimate and appear fixed to an observer
synchronized with the fundamental power frequency.
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Fig. 3. Case-study 1: 1.0 pu fundamental with superimposed 0.3 pu 3rd
harmonic: modulated signal (—), carrier signal (- - -), a) whole signal,
b) AM term, c) PM term

Nevertheless, it is important to note that information about
harmonic phase angles, usually not considered in the Fourier
expansion representation, plays a determinant role in both
the modulation effects, which are peak amplitude modification
and zero crossing delay.

4.2. Case-study 2: two interharmonic tones causing
amplitude modulation

A simple example will be considered consisting of two
superimposed interharmonics at frequencies of 40 Hz and
60 Hz respectively (0.1 pu, ¢;; = ¢;» = 0). AM effects on the
signal’s instantaneous amplitude are shown in Figure 4.

It is interesting to analyze the RMS of the modulated
signal because the modulating frequency of 10 Hz is one of
the frequencies most sensitive to light flicker. Starting from
an accurate Fourier expansion of the signal over a period of
100 ms, the RMS value is constant because the signal is
periodic and assumes the value 0.714 pu.

Incandescent lamps act as quadratic demodulators and
due to their thermal inertia are not able to follow the light
variations caused by the fundamental voltage, while they
follow 10 Hz variations of voltage RMS [4]. In practice, they
behave approximately as low-pass filters with a time constant
of about 20 ms (depending on the nominal power), so they
are sensitive to RMS values evaluated over a 20 ms sliding
window. Applying the RMS definition to (2) or to (3) over a
general window T, the following expression is obtained:

%{(1+2a ?1;(12)‘3 sn(X 2w1)cos[(t+ 2)2m] +

ngaT)l in(L 5 20y + Aw) cos| t+ T 5 )21+ Aw)] +

ngi)—zlsn( 201~ Aw) cos{(t+ 1)2(0; - Aw)] +

%22% n[f(Zwl+Aa))}cos[(t+7)(2a)1+Aw)}+ (20)
8 e smfof-Don}

2o ZaAw n[E(Zwl_Aw)}cos[(HE)(zwl_Aw)}r
%ZT { (2Aw)}cos[(t+ )(2Aw)}}
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Fig. 4. Case-study 2: 1.0 pu fundamental with two superimposed
interharmonics causing AM (0.2pu @ 10 Hz): modulated signal (—),
instantaneous amplitude U(?) (- - -)
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Fig. 5. Case-study 2: a) RMS value calculated over a 20 ms shifting
window versus the time (—) and RMS value calculated from Fourier
expansion over 100 ms (-.-.-); b) spectrum of curve (—)

The formula with 7= 20.00 ms, gives the RMS reported in
Figure 5. It is constituted by a DC component, a sinusoidal
component at 10 Hz, and other components that are
harmonics of 10 Hz.

It is worthwhile to note that the component at 10 Hz of the
RMS clearly shows the presence of conditions of high Light
Flicker PU values. The constant value for RMS obtained by
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Fig. 8. Case-study 3: Third harmonic (0.1pu) synchronized with the
fundamental carrier signal: (+) RMS values of the third harmonic in
the presence of an ideal PLL; (0) RMS value evaluated with reference
to the period of the fundamental power frequency carrier 20.00 ms;
(:)true RMS value evaluated over 100.00 ms time window.

the Fourier series expansion over 7= 100.00 ms (Fig. 5a)
completely masks the presence of light flicker conditions.

4.3. Case-study 3: two interharmonic tones causing phase
modulation

A simple example will be considered consisting of two
superimposed interharmonics at frequencies of 40 and 60 Hz
respectively (0.1 pu, ¢;; =0, ¢, = 7/2); furthermore, in the
second stage there is also a third harmonic (0.1 pu @
150.00 Hz).

It is interesting to analyze the effects of the
desynchronization with respect to the fundamental period
caused by the PM of the fundamental component. Two
extreme reference conditions are considered for the sake of
simplicity to evaluate RMS values: a) the presence of an
ideal PLL that exactly follows the instantaneous variation of
phase angle (and of the frequency) of the modulated signal;
b) the presence of a perfect synchronization with the
frequency of the carrier signal.

Figure 6 shows the RMS values of the modulated signal
(fundamental + interharmonics) in both conditions a) and b).

It is worthwhile to note that the tuning action caused by the
PLL gives the possibility of an accurate evaluation of the RMS
instant by instant. On the other hand, RMS evaluation tuned
with the frequency of the carrier component is affected by
inaccuracies that depend on the period considered and that
assume null values only around instants in which there is a
sort of compensation, which are met two times along a Fourier
period of 100.00 ms. The results are characterized by oscillations
around the exact value and so their mean over a long interval
of observation gives compensation effects (smoothing).

Figure 7 shows the RMS values of the modulated signal
(fundamental + interharmonics) with the presence also of the
third harmonic (0.1 pu @ 150.00 Hz). RMS values are
evaluated once again in both conditions a) and b).

It is worthwhile to note that as the PLL tunes the
instantaneous frequency of the modulated fundamental, so
the third harmonic appears desynchronized. This causes the
presence of inaccuracies in the results compared to the exact
RMS value that is obtained with reference to the 100.00 ms
period. For RMS evaluation tuned with the frequency of the
carrier component, the same considerations applied to Figure
6 apply also in this case.

Figure 8 shows the same curves of Figure 7 with reference
to the RMS value of the third harmonic only, and evidences
the inaccuracies introduced by the PLL synchronization with
the PM fundamental.

5. PRACTICAL APPLICATIONS

The usefulness of the modulation representation remains
to be demonstrated, since the Fourier representation is the
most popular among power system engineers.

Practical applications are:

— Light Flicker assessment;

— determination of limits for low frequency (0-100 Hz)
interharmonics;

— development of robust techniques for harmonic and
interharmonic measurement;
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— active filter design;
— power electronic conversion apparatus design;
— measurement of true RMS values of currents and
voltages and of powers and energies.
The applications mentioned for the first three points are
reported in [4-5].

6. CONCLUSIONS

Amplitude and Phase Modulation effects of waveform
distortion in power systems have been analyzed. Recalls on
AM and PM have been given with particular reference to
spectral components. Then, simple inverse formulas were
obtained to demonstrate that summations of one or more
small tones to a given tone of interest can always be
interpreted in terms of AM and PM. The usefulness of AM
and PM representation, in particular in the presence of
interharmonic tones, has been demonstrated with reference
to simple case-studies and practical applications.
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APPENDIX A

A.1. Phase modulation
The analytical expression of a phase modulated signal is:
u(t) = cos| it + pax -COS(Awt+7/2- ;)| (A1)
by expanding the outer cosine and manipulating, it becomes:
u(t) = Jo (@max )cos(wst)+
+3 I (Puax ){cos[(wl —hAw)t+hp; |+
h=1 (A.2)
+ cos[(cu1 +hAw)t+h(z - <pi1)J}

with:

2 4
_Puax | 1__ Pwmax Pmax R
In(Pwa) =0 12 ah1 2y T 220+ 2)(2h 5 4) ]

& (~1) Py 1 2)

KIT(h+k+1) (A3)

the Bessel function of the first kind of order /# and I" denotes
the Gamma function [2].
The expression of the spectrum is:

(A4)

u(t) = cos| myt + pyax COS(Awt+7/2- i) | = +[1—‘p§"Tijoos(w1t)+

+WTAX[1_%TAXJ{COS[(‘”1 —Aw)t+ gy |+ cos| (0, + Aw)t+ —<pil:|}+ ot

h 2
+ V;g:xl [1- Z(V;mxz) ]{oos[(w1 —hAw)t+hpy, ]+ cos] (@ + hAw)t - hpy J}+ ..

A.2. Prevailing Phase modulation

Once assuming ¢4y = arctan(2a) = 2a, for very small
values of a, (A.4) can be rewritten as:

u(t);(l-Lchos(wlt)+ (A.5)

1

+a(1—§ a? ){cos[(wl -Aw)t+ <pi1:| + cos[(co1 +Aw)t+a- <pi1]}+

+%a2 (1—%’2 a? ){cos[(wl -2Aw)t+ 2<pi1] + COS[(a)1 +2A0)t- 2<pi1]}

neglecting the terms for #>2 . After some trivial algebra (A.5),
after discarding the terms a3 and a4, it becomes:

u(t) = cos(w;t) + afcos] (w; - Aw ) t+ ¢y, |+ cos| (01 + Aw)t+ 7 -y |}-
-a® {cos(a)lt)—g{cos[(wl —-2Aw)t+ 2<pi1] + cos[(oz)l +2A0)t- 2<pi1]}}

(A.6)
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Rearranging, it is:
u(t) = cos| jt + 2a- cos(Awt +7/2- ;) |+
+a%[1- cos(2Awt - 2¢;; ) |cos(wyt ) A7)
For a<<1, the first term is prevailing and (A.7) yields:

u(t) = cos wyt +2a-cos(Awt +7/2-py )| (A8)

which is a perfect PM.

A.3. Single interharmonic tone

The analytical expression:

u(t) = cos(w;t)+acos| (v, - Aw)t+gp;, | (A9)
by summing and subtracting the quantity:
%COS[(“’1+Aw)t—<pu] (A.10)

and rearranging, becomes:

u(t)= %cos(wlt)+ %{cos[(wl -Aw)t+ (pil:l + cos[(cu1 +Aw)t- (pi1:|}+
+%cos(w1t)+ %{cos[(wl —Aw)t+ (pi1]+ cos[(wl +Aw)t+a— (pu]}

(A1)
Considering (2) and (A.8), it is:

u(t) = %[1+ 2acos(Awt - <pi1)] cos(wst)+

(A.12)
+%cos[wlt +2acos(Awt+7/2-¢p;,) |

A.4. Two symmetric components

The analytical expression considered:

u(t) = cos(wit)+ alcos[(wl— Ao)t+ 90i1]+

Al
+a, COS| (w; + Aw)t+ ¢y, | *.13)
can be rewritten as:
u(t)= %cos(wlt)+ a cos| (v — Aw)t+¢;; |+
(A.14)
+%cos(w1t)+ a, cos| (0, + Aw)t+¢;, |

which corresponds to the summation of two terms as (A.9).
By using (A.12), it is:

u(t)=

[1+2a, cos(Awt +¢;, ) |cos(wyt) +

[1+2a, cos(Awt - g;; ) |cos(wqt) +

NG

+

NI

(A.15)

+%cos[wlt +2a; - cos(Awt + /2 <pi1)} +

+%cos[w1t +2a, - cos(Awt+7/2-p;, )]
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