PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Laboratory and pilot scale photodegradation of cyanide-containing wastewaters

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Fotodegradacja cyjnków zawartych w ściekach w skali laboratoryjnei i w istalacji pilotowej
Języki publikacji
EN
Abstrakty
EN
Cyanide degradation efficiency using advanced oxidation methods was investigated. Model cyanide solutions in TiO2/UV and H2O2/UV systems were degraded for different pH, temperature, gas phase, and kind of catalyst. Laboratory experiments of cyanide photodegradation were carried out in homogeneous UV/H2O2, and heterogeneous UV/TiO2 systems using different forms of catalyst. For the first time cyanide degradation using TiO2 supported on glass microspheres has been studied. Photodegradation of cyanide was enhanced by addition of hydrogen peroxide and copper ions. Almost 20 % increase in cyanide oxidation efficiency was observed for photocatalytical oxidation of copper cyanide complexes. Moreover, cyanide photodegradation in an Air Sparged Hydrocyclone (ASH) unit was examined.
PL
W pracy badano efektywność procesu degradacji cyjanków stosując odpowiednie metody utleniania. Roztwory modelowe cyjnków zawierające TiO2 i H2O2 były poddane fotodegradacji przy różnych warunkach pH, temperaturze, przy różnym składzie fazy gazowej i w obecności różnych katalizatorów. Doświadczenia laboratoryjne nad fotodegradacją cyjanków zostały wykonane w układzie homogennym UV/H2O2 i układzie heterogennym UV/TiO2 przy zastosowaniu różnych form katalizatora. Po raz pierwszy badano degradację cyjanków przy zastosowaniu jako katalizatora TiO2, który został naniesiony na szklane mirokulki. Fotodegradacja cyjanków wzrasta po dodaniu do układu nadtlenku wodoru i jonów miedzi. Prawie 20% wzrost w efektywności utlenienia cyjanków był zaobserwowany dla fotodegradacji cyjankowych kompleksów miedzi. Dodatkowo badano fotodegradację w specjalnym hydrocyklonie (air sarged hydrocyclone-ASH).
Rocznik
Tom
Strony
229--248
Opis fizyczny
bibliogr. 35 poz.
Twórcy
  • Department of Chemical Technology, Gdansk University of Technology, 80-952 Gdansk, Poland
autor
  • Department of Chemical Technology, Gdansk University of Technology, 80-952 Gdansk, Poland
autor
  • Department of Chemical Technology, Gdansk University of Technology, 80-952 Gdansk, Poland
autor
  • Department of Metallurgical Engineering, University of Utah, Salt Lake City, Utah 84112, USA
Bibliografia
  • WHITE, D. M.; SCHNABEL, W., (1998), Treatment of cyanide waste in a sequencing batch biofilm reactor, Water Research, 32, 254-257.
  • WHITE, D. M.; PILON, T. A.; WOOLARD, C., (2000), Biological treatment of cyanide containing wastewater, Water Research, 34, 2105-2109.
  • MILLS, A.; LEE, S.-K.,(2002), A web-based overview of semiconductor photochemistry-based current commercial applications, Journal of Photochemistry and Photobiology, A: Chemistry, 152, 233-247.
  • MALATO, S.; BLANCO, J.; VIDAL, A.; RICHTER, C., (2002), Photocatalysis with solar energy at a pilot-plant scale: an overview, Applied Catalysis, B: Environmental, 37, 1-15.
  • SCHIAVELLO, M.; EDITOR, NATO Advanced Science Institutes Series, Series C: Mathematical and Physical Sciences, Vol 237: Photocatalysis and Environment: Trends and Applications, 1988, 706 pp.
  • MIHAYLOV, B. V.; HENDRIX, J. L.; NELSON, J. H., (1993), Comparative catalytic activity of selected metal oxides and sulfides for the photooxidation of cyanide, Journal of Photochemistry and Photobiology, A: Chemistry, 72, 173-177.
  • WU, F.; DENG, N. S., Photochemistry of hydrolytic iron (III) species and photoinduced degradation of organic compounds. A minireview, (2000), Chemosphere, 41, 1137-1147.
  • FRANK, S. N.; BARD, A. J., Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders, (1977), Journal of Physical Chemistry, 81, 1484-1488.
  • MATATOV-MEYTAL, Y. I.; SHEINTUCH, M., (1998), Catalytic abatement of water pollutants, Industrial & Engineering Chemistry Research, 37, 309-326.
  • YEBER, M. C.; RODRIGUEZ, J.; BAEZA, J.; FREER, J.; ZAROR, C.; DURAN, N.; MANSILLA, H. D., (1999), Toxicity abatement and biodegradability enhancement of pulp mill bleaching effluent by advanced chemical oxidation, Water Science and Technology, 40, 337-342.
  • DABROWSKI, B.; ZALESKA, A.; JANCZAREK, M.; HUPKA, J.; MILLER, J. D., (2002), Photooxidation of dissolved cyanide using TiO2 catalyst, Journal of Photochemistry and Photobiology, A: Chemistry, 151, 201-205.
  • ISMAIL, A. A.; IBRAHIM, I. A.; MOHAMED, R. M., (2003), Sol-gel synthesis of vanadia-silica for photocatalytic degradation of cyanide, Applied Catalysis, B: Environmental, 45, 161-166.
  • DABROWSKI, B.; ZALESKA, A.; HUPKA, J., (2000), Chloride ions formation during degradation of organochloride compounds using TiO2 deposited on glass microspheres, Central European Journal of Public Health, 8, 37-38.
  • CHEN, J. N.; CHAN, Y. C.; LU, M. C., (1999), Photocatalytic oxidation of chlorophenols in the presence of manganese ions, Water Science and Technology, 39, 225-230.
  • EL-MORSI, T. M.; BUDAKOWSKI, W. R.; ABD-EL-AZIZ, A. S.; FRIESEN, K. J., (2000), Photocatalytic Degradation of 1,10-Dichlorodecane in Aqueous Suspensions of TiO2: A Reaction of Adsorbed Chlorinated Alkane with Surface Hydroxyl Radicals, Environmental Science and Technology, 34, 1018-1022.
  • GALLARDO, V.; ANDERSON, M. A.; CANDAL, R.; ZELTNER, W., (2003), Photoelectrocatalytic Degradation and Removal of Organic and Inorganic Contaminants in Ground Waters, U.S. Environmental Protection Agency, National Risk Management Research Laboratory, 1-7.
  • HILGENDORFF, M.; HILGENDORFF, M.; BAHNEMANN, D. W., (1996), Mechanisms of photocatalysis: the reductive degradation of tetrachloromethane in aqueous titanium dioxide suspensions, Journal of Advanced Oxidation Technologies, 1, 35-43.
  • KRICHEVSKAYA, M.; MALYGINA, T.; PREIS, S.; KALLAS, J., (2001), Photocatalytical oxidation of de-icing agents in aqueous solutions and aqueous extract of jet fuel,Water Science and Tech., 44, 1-6.
  • KANEKO, M.; OKURA, I., (2003), Photocatalysis, Science and Technology, 356.
  • PELIZZETTI, E.; MINERO, C., (1994), Metal oxides as photocatalysts for environmental detoxification, Comments on Inorganic Chemistry, 15, 297-337.
  • ARTUNA, E.; ZALESKA, A.; HUPKA, J., (1999), Impact of oxygen on photocatalytical degradation of phenol, Proceedings of The 5th International Conference on Solar Energy Storage and Applied Photochemistry [Solar'99], Cairo, Egypt.
  • YANG, T. C. K.; WANG, S. F.; TSAI, S. H. Y.; LIN, S. Y., (2001), Intrinsic photocatalytic oxidation of the dye adsorbed on TiO2 photocatalysts by diffuse reflectance infrared Fourier transform spectroscopy, Applied Catalysis, B: Environmental, 30, 293-301.
  • AUGUGLIARO, V.; LODDO, V.; MARCI, G.; PALMISANO, L.; LOPEZ-MUNOZ, M. J., Photocatalytic oxidation of cyanides in aqueous titanium dioxide suspensions, (1997),Journal of Catalysis, 166, 272-283.
  • HIDAKA, H.; NAKAMURA, T.; ISHIZAKA, A.; TSUCHIYA, M.; ZHAO, J., (1992), Heterogeneous photocatalytic degradation of cyanide on titania surfaces, Journal of Photochemistry and Photobiology, A: Chemistry, 66, 367-374.
  • POLLEMA, C. H.; HENDRIX, J. L.; MILOSAVLJEVIC, E. B.; SOLUJIC, L.; NELSON, J. H., (1992), Photocatalytic oxidation of cyanide to nitrate at titania particles, Journal of Photochemistry and Photobiology, A: Chemistry, 66, 235-244.
  • ALICILAR, A.; KOMURCU, M.; MURATHAN, A., (2002), Air oxidation of aqueous cyanides in a countercurrent fixed bed reactor, Korean Journal of Chemical Engineering, 19, 273-276.
  • FRANK, S. N.; BARD, A. J., Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder, (1977), Journal of the American Chemical Society, 99, 303-304.
  • BARAKAT, M. A.; CHEN, Y. T.; HUANG, C. P., Removal of toxic cyanide and Cu(II) Ions from water by illuminated TiO2 catalyst, (2004), Applied Catalysis, B: Environmental, 53, 13-20.
  • CHIANG, K.; AMAL, R.; TRAN, T., (2002), Photocatalytic degradation of cyanide using titanium dioxide modified with copper oxide, Advances in Environmental Research, 6, 471-485.
  • NOZAWA, M.; TANIGAWA, K.; HOSOMI, M.; CHIKUSA, T.; KAWADA, E., (2001), Removal and decomposition of malodorants by using titanium dioxide photocatalyst supported on fiber activated carbon, Water Science and Technology, 44, 127-133.
  • RZECHULA, J.; ZALESKA, A.; HUPKA, J.; DRELICH, J.; MILLER, J. D., (1998), Surface characteristic of microsphere-supported TiO2 photocatalyst, Proceedings of Third International Symposium on Effect of Surface Heterogeneity in Adsorption and Catalysis on Solids, Torun, Poland, 297-298.
  • PALMISANO, L.; SCHIAVELLO, M.; SCLAFANI, A.; MARTRA, G.; BORELLO, E.; COLUCCIA, S., (1994), Photocatalytic oxidation of phenol on TiO2 powders. A Fourier transform infrared study, Applied Catalysis, B: Environmental, 3, 117-132.
  • PERAL, J.; MUNOZ, J.; DOMENECH, X., (1990), Photosensitized cyanide oxidation over titanium dioxide, Journal of Photochemistry and Photobiology, A: Chemistry, 55, 251-257.
  • AUGUGLIARO, V.; GARCIA LOPEZ, E.; LODDO, V.; LOPEZ MUNOZ, M. J.; MARCI, G.; PALMISANO, L.; SCHIAVELLO, M., (1999), Photodegradation of free and complex cyanides in irradiated homogeneous and heterogeneous systems, Fresenius Environmental Bulletin, 8, 350-357.
  • GUROL, M. D.; HOLDEN, T. E., (1988), The effect of copper and iron complexation on removal of cyanide by ozone, Industrial & Engineering Chemistry Research, 27, 1157-1162.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT1-0012-0021
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.