PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Kształtowanie struktury i właściwości spiekanych materiałów kompozytowych na osnowie miedzi umacnianych dyspersyjnie

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Forming the structure and properties of sintered copper matrix composites dispersion-strengthened
Języki publikacji
PL
Abstrakty
PL
Przedstawiono wstępne wyniki badań otrzymywania materiałów kompozytowych na osnowie miedzi umocnionych cząstkami Y2O3 oraz ZrO2. Badano wpływ składu chemicznego oraz parametrów wytwarzania na strukturę i właściwości analizowanych materiałów. Proces wytwarzania obejmował mechaniczną syntezę proszków miedzi oraz tlenków itru i cyrkonu o składzie 0,5; 1,0 i 1,5% obj., a następnie ich konsolidację poprzez dwustronne prasowanie i następujące po nim spiekanie. Zastosowano również dodatkowe prasowanie dwustronne pod ciśnieniem 500 MPa oraz jako zabieg końcowy wyżarzanie rekrystalizujące. Analizie poddano zmiany wielkości cząstek proszku po mieleniu oraz jakość otrzymanych wyprasek.
EN
Preliminary results from the studies on preparation of the copper-based composite materials reinforced with the particles of Y2O3 and ZrO2 have been presented. The effect of the chemical composition and fabrication parameters on the structure and properties of the examined materials was investigated. The fabrication process included mechanical alloying of the powders of copper and the oxides of yttrium and zirconium with the composition of 0.5, 1.0 and 1.5 vol. %, respectively, followed by their consolidation by double-action pressing and sintering. An additional double-action pressing under the pressure of 500 MPa was also used, which was followed by annealing recrystallizing as a final operation. The changes in a size of powder particles after milling and quality of the obtained compacts were analysed. Morphology of the starting powders has been characterised and analysis of particle size distribution has been carried out. The X-ray studies showed that high-energy disintegration in a planetary ball mill results in the formation of nanocrystalline structure within powder particles at the size of the crystallites of an order of 49+135 nm. Measurements of the density and electrical conductivity of the composites have been carried out at particular stages of technological process showing that re-compressing and annealing of the powders had beneficial effect on both these parameters. It was found that both at low and high contents of a hardening phase, an additional pressing followed by annealing resulted in a density increase by 16%, on an average, in case of the compacts with an addition of Y2O3 and by 13% in the compacts with ZrO2 compared to density of the compacts after pressing. As a result of annealing, electrical conductivity of the compacts increased by 8 MS/m, on an average. Based on microstructure examination of the obtained composite materials it was found that the reinforcing particles were non-uniformly distributed within a matrix. Moreover, numerous clusters of the oxide phase particles and few pores of a different size were observed. The compression tests have also been carried out both at the room temperature and at elevated temperatures (450 and 750°C) in order to determine the main strength properties (Rco.2) and ductility ([delta]l, ac).
Czasopismo
Rocznik
Strony
141--146
Opis fizyczny
Bibliogr. 10 poz., tab., wykr., zdj.
Twórcy
autor
autor
autor
autor
autor
  • Instytut Metali Nieżelaznych, Zakład Technologii Przetwórstwa Metali i Stopów ul. Sowińskiego 5, 44-100 Gliwice, barbaraj@imn.gliwice.pl
Bibliografia
  • [1] Zhao N., Li J., Yang X., Influence of the P/M process on the microstructure and properties of WC reinforced copper matrix composite, Journal of Materials Science 2004, 39, 4829-4834.
  • [2] Kudashov D.V., Baum H., Martin U. et al., Microstructure and room temperature hardening of ultra-fine-grained oxide-dispersion strengthened copper prepared by cryomilling, Materials Science and Engineering 2004, A 387-389, 768-771.
  • [3] Wan Y.Z., Wang Y.L., Luo H., Cheng G., Effect of interfacial bonding strength on thermal expansion behaviour of PM A12O3, Powder Metallurgy 2000, 43, 1, 76-78.
  • [4] Palma R., Sepulveda O., Contamination effects on precipitation hardening of Cu-alumina alloys, prepared by mechanical alloying, Third International Latin-American Conference on Powder Technology, Florianopolis Brazil 26-28 November 2001, published in Journal of Materials Science Forum.
  • [5] Lee D.W., Kim B.K., Nanostructured Cu-Al2O3 composite produced by thermochemical process for electrode application, Materials Letters 2004, 58, 378-383.
  • [6] Deshpande P., Li J., Lin R., Infrared processed Cu composites reinforced with WC particles, Materials Science and Engineering 2006, A 429, 58-65.
  • [7] Shi Z., Yan M., The preparation of Al2O3-Cu composite by internal oxidation, Applied Surface Science 1998, 134, 103--106.
  • [8] Min K., Oh S. T., Kim Y., Moon I-H., Processing and fracture toughness of nano-sized Cu-dispersed A12O3 composites, 2003, 352, 163-167.
  • [9] Cadek J., Kucharova K., Novel interpretation of high temperature creep in an ODS Cu-ZrO2 alloy, Kovove Materialy, 2002, 40, 3, 133-145.
  • [10] Kucharova K., Cadek J., Creep of ODS copper in two distinctly different temperature intervals as interpreted in ters of the true threshold stress, Kovove Materialy 2002, 40, 4, 231-241.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAR9-0001-0025
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.