Józef GAWOR, Dariusz WOŹNIAK

Instytut Metalurgii Żelaza

OPRACOWANIE TECHNOLOGICZNYCH PODSTAW WYTWARZANIA BLACH GRUBYCH WYSOKOWYTRZYMAŁYCH DO ZASTOSOWAŃ W NISKICH TEMPERATURACH

Decydujący wpływ na poziom właściwości mechanicznych stali wywierają parametry przeróbki cieplno-plastycznej i szybkości chłodzenia po przeróbce. Właściwości stali mogą się istotnie zmieniać w zależności od wielkości odkształcenia w końcowych przepustach, temperatury końca walcowania oraz szybkości chłodzenia po walcowaniu. Celem badań było opracowanie półprzemysłowej technologii wytwarzania blach grubych wysokowytrzymałych ze stali niskowęglowych konstrukcyjnych przeznaczonych do zastosowań w obniżonych temperaturach. Wytypowano składy chemiczne stali, określono wstępne parametry procesu i przeprowadzono próby walcowania blach z obróbką cieplno-plastyczną i regulowanym chłodzeniem bezpośrednio po walcowaniu w module B Linii do Półprzemysłowej Symulacji Wytwarzania Metali i Stopów (LPS) budowanej w Instytucie Metalurgii Żelaza. Walcowano stale niskowęglowe o zróżnicowanej zawartości C, Mn i mikrododatków Nb, Ti, V o wartości równoważnika węgla w zakresie 0,36 do 0,50. Wykonano badania właściwości mechanicznych, udarności KV w zakresie temperatur od 20 do -60° C i mikrostruktury. Założoną do osiągnięcia wartość udarności KV_{min} = 27 J w temperaturze badania -60° C uzyskano dla blach o grubości 6÷7,5 mm. Mikrostruktura tych blach jest drobnoziarnista ferrytyczno-perlityczno-bainityczna, a ich właściwości spełniają wymagania dla kategorii S420ML i S460ML.

<u>Słowa kluczowe</u>: stal niskowęglowa, obróbka cieplno-plastyczna, przyspieszone chłodzenie

DEVELOPMENT OF TECHNOLOGICAL BASIS FOR MANUFACTURING OF HIGH-STRENGTH METAL PLATES FOR APPLICATIONS AT LOW TEMPERATURES

The decisive effect on mechanical properties of steel is exerted by the parameters of thermo-mechanical treatment and rate of cooling after treatment. Steel properties can significantly vary depending on the volume of strain in final passes, end-of-rolling temperature and rate of cooling after rolling. The purpose of the research was to develop the semi-industrial technology for manufacturing of high-strength metal plates from low-carbon constructional steels for applications at reduced temperatures. Chemical compositions of steels were selected, initial process parameters were determined and testing of plate rolling with thermo-mechanical treatment and controlled cooling immediately after rolling in module B of the semi-industrial line for simulation of manufacturing metal and alloy products (LPS) being built in the Institute for Ferrous Metallurgy was carried out. Low-carbon steels with diverse content of C, Mn and micro-additions of Nb, Ti, V with carbon equivalent varying between 0.36 and 0.50 were rolled. The investigations of mechanical properties, impact resistance KV within the temperature range from 20 to -60° C and microstructure were carried out. The assumed impact resistance KVmin = 27 J at test temperature of -60° C was obtained for metal plates $6\div7.5$ mm thick. These plates have fine-grained ferritic-pearlitic-bainitic microstructure and their properties meet the requirements for S420ML and S460ML category.

Key words: low-carbon steel, thermo-mechanical treatment, accelerated cooling

1.WSTĘP

Eksploatacja surowców energetycznych w zimnych strefach klimatycznych stymuluje rozwój nowej generacji spawalnych stali zwłaszcza na konstrukcje morskie, charakteryzujących się granicą plastyczności od 235 do 460 MPa, polepszoną spawalnością (równoważnik węgla $C_E = 0,28$ max.) i podwyższoną odpornością na kruche pękanie w temperaturach ujemnych do -60°C [1–4]. Z danych uzyskanych od odbiorców blach wynika, że ze względu na lepszą spawalność (niski równoważnik węgla), blachy wytwarzane z niskowęglowych stali nowej

generacji są konkurencyjne w stosunku do blach normalizowanych i ulepszanych cieplnie, produkowanych ze stali o zwiększonej zawartości węgla i składników stopowych pogarszających spawalność.

Blachy ze stali nowej generacji są walcowane z obróbką cieplno-plastyczną i regulowanym chłodzeniem bezpośrednio po walcowaniu. Podwyższenie ich wytrzymałości przy zachowaniu lub polepszeniu właściwości plastycznych i odporności na kruche pękanie w niskich temperaturach następuje głównie w wyniku rozdrobnienia ziarna. Rozdrobnienie ziarn ferrytu uzyskuje się przez niskotemperaturowe regulowane walcowanie z 28

przepustami końcowymi w zakresie dwufazowym z następnym chłodzeniem w powietrzu lub chłodzeniem przyspieszonym, albo przez regulowane walcowanie rekrystalizujące w zakresie austenitycznym i przyspieszone chłodzenie po walcowaniu. Dobre połączenie wysokiej wytrzymałości, ciągliwości i plastyczności uzyskuje się dzięki utworzeniu wielofazowej mikrostruktury składającej się z wysp martenzytycznych, bainitu listwowego i ziarn ferrytu. Wysepki martenzytu (3÷5% udziału) tworzącego się podczas chłodzenia z ostatnich porcji przechłodzonego austenitu wzbogaconego w węgiel na skutek przemiany pośredniej charakteryzują się największą twardością spośród wszystkich składników strukturalnych stali. Obecność w mikrostrukturze stosunkowo miękkich ziarn ferrytu powoduje relaksację naprężeń przy obciążeniu udarowym. Istotny wkład w kształtowanie mikrostruktury i właściwości stali zawierającej mikrododatki wnoszą drobnodyspersyjne cząstki weglików i weglikoazotków niobu, wanadu i tytanu powodujące umocnienie wydzieleniowe i rozdrobnienie ziarn.

W ostatnich latach wzrosło zainteresowanie stalami niskoweglowymi o wysokiej granicy plastyczności minimum 700 MPa. Są to stale mikrostopowe zawierające około 0,05% C oraz mikrododatki Ti lub Ti i Nb wytwarzane z zastosowaniem obróbki cieplno-plastycznej i przyspieszonego chłodzenia. Misra i inni [5] badali mechanizm umocnienia stali 0,05% C i 1,5% Mn z mikrododatkami Nb i Ti osiągającej granicę plastyczności 770 MPa i stwierdzili, że dominującymi czynnikami umacniającymi są duża gęstość dyslokacji i nanowydzielenia. Yi i inni [6] opracowali stal o granicy plastyczności 700 MPa z dodatkiem Ti (0,18%). Ich analiza pokazała również, że wysoka wytrzymałość jest wynikiem utworzenia drobnoziarnistej mikrostruktury bainitycznej i umocnienia wydzieleniowego. Podobne wyniki zawierają inne publikacje japońskie [7] i chińskie [8].

W celu wprowadzenia przemysłowej technologii wytwarzania blach ze stali nowej generacji przeznaczonych na konstrukcje eksploatowane w niskich temperaturach, w Instytucie Metalurgii Żelaza podjęto w ramach prac własnych [9–12] symulacje fizyczne obróbki cieplno-plastycznej stali niskowęglowej z zastosowaniem zróżnicowanych temperatur odkształcania i zróżnicowanych przebiegów chłodzenia po odkształcaniu. Badania prowadzono na stalach kategorii S355 i S420 z produkcji przemysłowej i na stalach doświadczalnych mikrostopowych o nieznormalizowanym składzie chemicznym.

2. MATERIAŁ BADAŃ

Badania przeprowadzono na stalach niskowęglowych zawierających od 1,2 do 1,8% Mn i mikrododatki (tablica 1). Wsadem do eksperymentalnego walcowania w Linii do Półprzemysłowej Symulacji Procesów Wytwarzania Stopów i Wyrobów Metalowych (LPS) były wlewki z wytopów doświadczalnych i odcinki blach pobrane z arkuszy walcowanych w warunkach przemysłowych.

Wytopy doświadczalne S198 i S203 wykonano w próżniowym piecu indukcyjnym VSG 100 S o pojemności tygla 100 kg. Technologię wytapiania i odlewania stali opisano w pracy [11]. Blachy przemysłowe oznaczone S300 i S400, z których pobrano odcinki do walcowania eksperymentalnego posiadały kategorię wytrzymałościową odpowiednio S355 i S420. Dla poszczególnych składów chemicznych stali obliczono równoważniki węgla zgodnie ze wzorem:

 $C_E = C + Mn/6 + (Cr + Mo + V)/5 + (Cu + Ni)/15$

3. ZAKRES EKSPERYMENTÓW I BADAŃ

Wykonano następujące eksperymenty i badania:

- wstępne walcowanie w LPS wlewków i odcinków blach na blachy o grubości 10 i 20 mm, które stanowiły dalszy wsad do walcowania blach z obróbką cieplno-plastyczną i regulowanym chłodzeniem bezpośrednio po walcowaniu,
- określenie punktów krytycznych stali,
- wstępne określenie parametrów i opracowanie technologii walcowania z obróbką cieplno-plastyczną,
- przeprowadzenie prób walcowania w skali półprzemysłowej w linii LPS,
- badania właściwości mechanicznych i rozkładu twardości na grubości blach oraz udarności,
- badania mikrostruktury.

4. OPRACOWANIE TECHNOLOGII I WYKONANIE EKSPERYMENTÓW REGULOWANEGO WALCOWANIA BLACH Z OBRÓBKĄ CIEPLNO-PLASTYCZNĄ W WARUNKACH TECHNICZNYCH I TECHNOLOGICZNYCH MODUŁU B-LPS

Wsadem do walcowania blach z obróbką cieplno-plastyczną i regulowanym chłodzeniem bezpośrednio po

Tablica 1. Składy chemiczne i równoważniki węgla stali walcowanych w LPS Table 1. Chemical compositions and carbon equivalents for steels rolled in LPS

Symbol i pochodzenie		Zawartość składników,% masowy										
materiału	С	Mn	Si	Р	S	Al _C	V	Ti	Nb	В	N	- 15
S198 wytop doświadczalny	0,062	1,24	0,38	0,007	0,008	0,033	0,055	0,072	0,029	0,003	0,013	0,36
S203 wytop doświadczalny	0,090	1,79	0,47	0,008	0,007	0,022	0,084	0,049	0,038	0,003	0,016	0,50
S300 wytop przemysłowy	0,18	1,49	0,40	0,013	0,001	0,044	0,012	0,003	-	0,001	0,004	0,44
S400 wytop przemysłowy	0,20	1,56	0,35	0,013	0,009	0,036	0,002	0,001	-	0,001	0,009	0,47

Tablica 3. Tabela przepustów i opracowane parametry walcowania na przykładzie próbki S198_1_1

walcowaniu były wlewki i odcinki blach walcowanych wstępnie na wymiar 10 i 20 mm. Z wsadu tego walcowano blachy o grubości w zakresie 6÷7,5 mm.

Parametry procesu walcowania na gorąco opracowano zakładając, że wielkość zadawanego gniotu jest uwarunkowana dopuszczalną siłą nacisku pasma na walce. Podstawą określenia siły nacisku w czasie walcowania jest wyznaczenie średniego nacisku jednostkowego. Właściwe opisanie tej wielkości dla konkretnych warunków polega na wybraniu metody odpowiedniej dla danego procesu. W wyniku przeprowadzonych analiz uznano, że do wyznaczenia średniego nacisku jednostkowego, jaki wywiera pasmo na walce w warunkach jednoklatkowej walcarki nawrotnej LPS - moduł B, najlepsze rezultaty daje metoda Zjuzina opisana w [13], którą zastosowano do obliczeń. Zaletą tej metody jest uwzględnienie stanu naprężenia i szerokości pasma w zależności od współczynnika kształtu kotliny walcowania. Współczynnik wpływu szerokości pasma jest zmienny w zależności od stosunku długości rzutu łuku styku do średniej wysokości pasma i od stosunku średniej szerokości pasma do jego średniej wysokości.

Zastosowanie odpowiedniej funkcji opisującej naprężenie uplastyczniające ma podstawowe znaczenie dla optymalnego zaprojektowania intensywności gniotów w procesie walcowania. Do obliczenia wartości naprężenia uplastyczniającego posłużono się metodą opracowaną przez Hensla i Spittla [14].

Przyjęto założenie, że proces regulowanego walcowania stali niskowęglowych prowadzony będzie w temperaturze powyżej $A_{\rm r3}$, a końcowe walcowanie w pobliżu temperatury $A_{\rm r3}$ lub w zakresie przemiany α + γ zaś bezpośrednie chłodzenie powinno zapewnić otrzymanie drobnoziarnistej mikrostruktury ferrytyczno-perlityczno-bainitycznej (F-P-B) lub ferrytyczno-bainitycznomartenzytycznej (F-B-M). Oczekiwano, że pożądaną mikrostrukturę można będzie uzyskać przez dobór temperatury końca walcowania wstępnego i temperatury walcowania kończącego oraz przez dobór wielkości odkształcenia w przepustach wykańczających i przez dobór intensywności chłodzenia.

Temperatury krytyczne badanych stali określono na próbkach dylatometrycznych rurkowych ø 4/3×7 mm zgodnie z zaleceniami normy [15]. Wyniki podano w tablicy 2.

Tablica 2. Temperatury krytyczne staliTable 2. Critical temperatures of steel

Oznaczenie stali	A_{c1}	A_{c3}	\mathbf{M}_{s}
S198	718	940	-
S203	717	928	-
S300	714	857	432

Parametry walcowania i chłodzenia były następujące:

- temperatura nagrzewania wsadu: 1200° C,
- temperatura początku walcowania: 1150° C,
- obniżenie temperatury przepustów wykańczających: $820 \div 750^{\circ} \text{ C},$
- wielkość odkształcenia w przepustach wykańczających: φ > 0,2,
- sposób chłodzenia po walcowaniu: natryskiem wodnym przy przepływie wody 300 l/min. do osiągnięcia temperatury 500°C i dalsze chłodzenie w powietrzu.

Uwagi		załadowanie wsadu do pieca (~1200 °C), wygrzanie w czasie 2 min				schlodzenie pasma przed ostatnim przepustem do 820 + 780 $^{\circ}$	chłodzenie natryskiem wody 300 l/min. Do temperatury 500 °C ; dalej chłodzenie w powietrzu
Czas przerw	ŝ		Ś	Ω.	C.	4	4
Czas walcowania	so		6'0	Ļμ	1,4	124	2,4
Djugość pasma	ε	0,500	9'0	0,8	6'0	1,2	1.7
Prędkość walcowania	m/s		0,7	0,7	8,7	0,7	0,7
Prędkość ódkształcenia	1-S		2.77	3,28	3,70	4,04	5,60
Odkształcenie rzeczywiste			0.19	0,22	0,23	0.21	0,36
Temperatura pasma	D.		1000	870	910	870	815
Szerokość pasma	mm	170	171	172	173	174	175
Wydłużanie	Ð		1,21	1,25	1,25	1,24	1,43
Gniot	%		17,9	20,6	20,7	19,6	30,2
Grubość po przepuście	шш	20,70	17,00	13,50	10,70	8,60	6,00
Przepust		wsad	÷	2	n	4	ъ

Tablica 4. Raport skrócony z walcowania i regulowanego chłodzenia na przykładzie próbki S198_1_1 Table 4. Abridged report on rolling and controlled cooling based on the example of sample S198_1_1

Nazwa próbki JG_S0_0781_S198_1_1

RAPORT Z WALCARKI

Przepust	Odstęp między walcami w czasie przepustu	Prędkość walcowania (liniowa)	Temperatura pasma przed przepust.	Temperatura pasma po przepuście	Siła nacisku całkowita	Moment całkowity	Czas trwania przepustu	Czas między przepustami	Czas od wyładowania wsadu z pieca do dojścia do walcarki
-1.2	[mm]	[m/s]	[°C]	[°C]	[MN]	[kNm]	[s]	[s]	[s]
wsad									1 1 1 1
1	17,36	0,73	982	979	2,059	11,284	1,2	0,0	31,3
2	13,93	-0,74	966	939	2,252	-38,342	1,3	9,6	
3	11,20	0,74	911	894	2,462	15,178	1,6	10,8	9
4	9,10	-0,74	871	843	2,558	-40,557	1,8	7,4	
5	6,29	0,73	816	788	2,696	21,259	2,2	31,3	T. S

RAPORT Z CHŁODNI NATRYSKOWEJ

Chłodzenie	Wysokość pasma	Temperatura pasma przed chłodzeniem	Temperatura pasma po chłodzeniu	Czas chłodzenia	Przepły w wody	
	[mm]	[°C]	[°C]	[s]	[l/min]	
1	6,19	762	507	8,7	300	

Rys. 1. Przebieg zmian temperatury powierzchni pasma przed i po przepuście na przykładzie walcowania próbki S198_1_1 w przepuście 1

Walcowanie prowadzono według schematów i opracowanych parametrów, których przykłady podano w tablicy 3.

W czasie walcowania mierzono i rejestrowano parametry procesu. Raport skrócony zawierający podstawowe parametry walcowania i chłodzenia blach o grubości 6 mm przedstawiono w tablicy 4 na przykładzie próbki S198_1_1. Natomiast przykładowe przebiegi zmian temperatury i parametrów siłowo-energetycznych zarejestrowane podczas walcowania próbki S198_1_1 w przepuście 1 pokazano odpowiednio na rysunku 1 i 2. Temperaturę początku i końca chłodzenia po walcowaniu dodatkowo kontrolowano za pomocą pirometru przenośnego.

Próbka 2011-8-2_11-58-1 - Przepust 1

Rys. 2. Przebieg zmian parametrów siłowo-energetycznych na przykładzie walcowania próbki S198_1_1 w przepuście 1

Fig. 2. Course of changes in energy and force parameters based on the example of rolling sample S198_1_1 in pass 1

5. METODYKA BADAŃ BLACH

Z walcowanych blach pobrano próbki do badań wytrzymałościowych, udarności i mikrostrukturalnych. Do próby rozciągania stosowano standardowe próbki płaskie wzdłużne, do próby udarności trzy próbki wzdłużne typu Charpy V o szerokości 5 lub 7,5 mm. Badania mikrostruktury przeprowadzono metodą mikroskopii świetlnej i elektronowej mikroskopii skaningowej na zgładach trawionych nitalem przygotowanych z główek próbek wytrzymałościowych po próbie rozciągania. Mikroanalizę wtrąceń niemetalicznych i wydzieleń azotków występujących w stali wykonano za pomocą mikroskopu skaningowego Inspekt F wyposażonego w detektor EDS na zgładach nietrawionych i na przełomach próbek wytrzymałościowych uzyskanych w próbie rozciągania.

6. WYNIKI BADAŃ I ICH DYSKUSJA

6.1. WŁAŚCIWOŚCI MECHANICZNE BLACH

Wyniki badań właściwości wytrzymałościowych blach o grubości w zakresie 6÷10 mm walcowanych z obróbką cieplnoplastyczną i regulowanym chłodzeniem po walcowaniu podano w tablicy 5. Wyniki badań udarności podano w tablicy 6.

Założoną wartość udarności KV_{min} 27 J w temperaturze badania -60°C uzyskały blachy walcowane z wsadów zewnętrznych (z odcinków blach przemysłowych S300 i S400) przy następujących parametrach: chłodzenie pasma przed ostatnim przepustem do 820÷760°C, chłodzenie natryskiem wodnym do temperatury 400° C i

dalej chłodzenie w powietrzu. Właściwości wytrzymałościowe tych blach odpowiadają kategorii S420ML (blacha S300-3-2) i S460ML (blachy S400-1-2 i S400-2-1) według PN-EN 10025-4.

Blachy walcowane ze stali doświadczalnych z wytopów laboratoryjnych uzyskały bardzo wysokie właściwości wytrzymałościowe przy niskich wartościach wydłużenia A_5 i udarności (tabl. 6). Szczególnie wysoką wartość granicy plastyczności, $R_e = 905$ MPa i $R_m =$ 1050 MPa wykazały blachy ze stali S203 zawierającej dużą ilość mikrododatków V + Nb + Ti i podwyższoną zawartość Mn (równoważnik węgla C_E dla tej stali wynosi 0,50).

6.2. MIKROSTRUKTURA BLACH

Przykładowe mikrofotografie struktur blach przedstawiono na rysunkach 3÷7. Mikrostruktura blach S300-3-2 i S400-1-2 walcowanych z wsadu zewnętrz-

Tablica 5. Zestawienie wyników z próby rozciągania i pomiarów twardości HV10 Table 5. Summary of the results of tensile test and hardness measurement HV10

	Cruboáá	R_e [MPa]		R_m [MPa]		A_5 [%]		Rozkład twardości HV 10 na grubości				
Oznaczenie	[mm]	próbka 1	próbka 2	próbka 1	próbka 2	próbka 1	próbka 2	blach, pierwszy w odległości 0 brzegu i kolejno co 1,5 m			głości 0,5 co 1,5 mn	mm od n
S198-1	7,5	619	549	761	742	16,3	19,7	286	293	287	292	293
S203-2-1	7,5	942	868	1056	1044	11,3	-	363	370	361	366	378
S203-2-2	7,5	870	822	1046	1099	11,2	11	368	394	386	382	369
S300-3-2	6	415	429	592	606	21,4	21,8	185	194	184	190	-
S400-1-2	6,5	550	460	654	609	-	20,2	172	186	187	191	-
S400-2-1	6	451	453	630	629	23,3	23,6	202	222	214	213	-

Tablica 6. Wyniki badań udarności blach o grubości 6–7,5 mm Table 6. Results of impact resistance tests of plates 6–7.5 mm thick

	0 1 44		Energia pochłonięta KV, [J]											
Oznaczenie	Grubosc	Temperatura 23°C				Г	empera	tura -40°	С	Г	Temperatura -60°C			
	[]	Pr ₁	Pr ₂	Pr ₃	Śr.	Pr ₄	Pr ₅	\mathbf{Pr}_{6}	Śr.	Pr ₇	Pr ₈	Pr ₉	Śr.	
S198-1	7,5	27,5	32,9	27,2	29,2	9,8	11,2	12,8	11,3	8,1	8,2	8,5	8,3	
S203-2-1	7,5	74,1	52,7	21,5	49,4	6,8	18,2	8,7	11,2	8,2	12,8	9,5	10,2	
S203-2-2	7,5	29,1	33,4	26,1	29,5	15,1	9,1	5,6	9,9	5,9	6,4	5,5	5,9	
S300-3-2	6	84,2	83,0	84,0	83,7	42,6	46,1	42,7	43,8	42,7	37,7	25,8	35,4	
S400-1-2	6,5	110,2	89,6	98,3	99,4	65,0	82,0	31,5	59,5	46,8	61,8	49,1	52,6	
S400-2-1	6	79,1	65,9	71,7	72,2	34,5	30,1	26,0	30,2	_	24,0	30,4	27,2	

Rys. 3. Mikrostruktura blachy S300-3-2 o grubości 6 mm walcowanej z obróbką cieplnoplastyczną i chłodzonej po walcowaniu natryskiem wody

Fig. 3. Microstructure of metal plate S300-3-2, thickness 6 mm, rolled with thermoplastic treatment and spray-cooled after rolling

Józef Gawor, Dariusz Woźniak

Rys. 4. Mikrostruktura blachy S400-2-1 o grubości 6 mm walcowanej z obróbką cieplno-plastyczną i chłodzonej po walcowaniu natryskiem wody

Fig. 4. Microstructure of metal plate S400-2-1, thickness 6 mm, rolled with thermoplastic treatment and spray-cooled after rolling

Rys. 5. Typowa mikrostruktura ferrytyczno-perlityczna blachy przemysłowej o grubości 40 mm ze stali S355, będącej wsadem do walcownia w linii LPS

Fig. 5. Typical ferritic-pearlitic microstructure of industrial S355 steel plate, thickness 40 mm, which is the charge for rolling in LPS

Rys. 6. Mikrostruktura blachy o grubości 7,5 mm walcowanej z obróbką cieplno-plastyczną ze stali doświadczalnej z wytopu laboratoryjnego S198

Fig. 6. Microstructure of experimental steel plate, thickness 7.5 mm, rolled from laboratory heat S198 with thermoplastic treatment

nego, które uzyskały wymaganą wartość udarności jest równomierna ferrytyczno-bainityczno-perlityczna, drobnoziarnista (rys. 3 i 4). Ziarna ferrytu są częściowo zrekrystalizowane równoosiowe, a częściowo występują w postaci iglastej. Wielkość ziarna ferrytu wynosi w przybliżeniu 10 µm. Dla porównania, na rysunku 5 przedstawiono typową mikrostrukturę blachy ze stali S355 w stanie normalizowanym (materiał wsadowy do Opracowanie technologicznych podstaw wytwarzania blach...

Rys. 7. Mikrostruktura blachy o grubości 7,5 mm walcowanej z obróbką cieplno-plastyczną ze stali doświadczalnej z wytopu laboratoryjnego S203

walcowania). Mikrostruktura blachy jest gruboziarnista ferrytyczno-perlityczna w układzie pasmowym, a wielkość ziarna ferrytu jest kilkakrotnie większa niż w blachach walcowanych z obróbką cieplnoplastyczną w LPS.

Prace IMŻ 3 (2012)

Zupełnie odmienną mikrostrukturę uzyskały blachy ze stali mikrostopowych walcowanych z wytopów doświadczalnych S198 i S203 zawierających odpowiednio 0,05 i 0,09% C i mikrododatki Nb, Ti, V (rys. 6 i 7). Mikrostruktura blach S198-1, S203-2-1 i S203-2-2 składa się z niezrekrystalizowanych wydłużonych pasm ferrytycznych z wydzieleniami azotków i bainitu, przy czym bainit występuje głównie w blachach ze stali S203

Oznaczania	Zawartość składników,% masowy										
Oznaczenie	S	Mn	Al	Ca	0	Mg	Fe				
1	42,9	-	-	49,9	-	-	7,2				
2	0,3	0,5	17,1	16,9	17,5	2,1	45,1				

Rys. 8. Złożone wtrącenia tlenkowo-siarczkowe w próbce blachy przemysłowej S300 i wyniki mikroanalizy rentgenowskiej

Fig. 8. Complex oxide and sulphide inclusions in S300 industrial metal plate sample and results of X-ray microanalysis o większej zawartości C i Mn oraz dużej zawartości mikrododatków ($C_E = 0,50$). W wyniku silnego umocnienia przez przemianę bainityczną i dyspersyjne wydzielenia azotków właściwości wytrzymałościowe blach walcowanych z wytopów doświadczalnych są znacznie wyższe niż blach o mikrostrukturze ferrytyczno-perlityczno-bainitycznej walcowanych z odcinków blach przemysłowych. Brak w mikrostrukturze tych stali wydzieleń wolnego ferrytu powodującego relaksację naprężeń przy obciążeniach udarowych sprawia, że blachy przy wysokich właściwościach wytrzymałościowych nie uzyskały wymaganego poziomu udarności.

6.3. WYNIKI MIKROANALIZY

Wyniki mikroanalizy wtrąceń niemetalicznych i wydzieleń azotków w badanych stalach przedstawiono na rys. 8÷12. W stali z wytopu przemysłowego S300 analizowano złożone wtrącenia tlenkowo-siarczkowe modyfikowane wapniem (rys. 8). W stali z drugiego wytopu przemysłowego S400 występują głównie drobne wydłużone siarczki typu MnS, a sporadycznie obserwowano również pierwotne białe cząstki węglikoazotków niobu (rys. 9). Natomiast w wytopach stali doświadczalnej S198 i S203 dominują wydzielenia węglikoazotków (Ti,Nb)(C,N) i sferoidalne lub wydłużone siarczki MnS (rys. 10 i 11).

6. PODSUMOWANIE I WNIOSKI

Obróbka cieplno-plastyczna w procesie walcowania wlewków i odcinków blach realizowana była w zakresie temperatur, w którym odkształcany austenit nie ulega rekrystalizacji lub rekrystalizuje niezupełnie. W stalach S198 i S203, które zawierają mikrododatki Nb, V i Ti tworzące wydzielenia węglikoazotków następuje opóźnianie i hamowanie rekrystalizacji tak, że otrzymuje się odkształcony austenit i odkształcony ferryt, a po ochłodzeniu powstaje drobnoziarnista mikrostruktura składająca się z odkształconych obszarów ferrytycznych z wydzieleniami węglikoazotków i z banitu. Blachy ze stali S198 i S203 uzyskały drobnoziarnistą mikrostrukturę składającą się z bainitu i z niezrekrystalizowanych pasm ferrytycznych z równomiernie roz-

Oznaczenie	Zawartość składników,% masowy									
	Nb	N	Mn	S	Fe					
1	76,1	10,4	3,9	-	8,4					
2	-	-	39,2	36,9	23,9					

Rys. 9. Wydłużone wtrącenia siarczkowe MnS i pierwotne wydzielenia węglikoazotku niobu w próbce blachy przemysłowej S400 i wyniki mikroanalizy rentgenowskiej Fig. 9. Elongated MnS sulphide inclusions and primary niobium carbonitride precipitations in S400 industrial metal plate sample and results of X-ray microanalysis

Ormonramia	Zawartość składników,% masowy										
Oznaczenie	S	Mn	Ti	Ν	Nb	Fe					
1	36,6	41,9	-	-	-	21,5					
2	-	-	65,9	25,8	3,7	2,7					
3	-	-	51,8	20,7	2,7	23,4					

Rys. 10. Mikrofotografia skaningowa wydzieleń (Ti,Nb) (C,N) i MnS w stali doświadczalnej S203-2-1 i wyniki mikroanalizy rentgenowskiej

Fig. 10. Scanning microphotograph of (Ti,Nb)(C,N) and MnS precipitations in S203-2-1 experimental steel and results of X-ray microanalysis

Oznaczenie	S	Mn	Ti	Ν	Nb	Fe
1	28,9	31,6	11,7	-	-	27,2
2	0,3	0,5	17,1	16,9	17,5	-

Rys. 11. Mikrofotografie skaningowe fragmentu przełomu ciągliwego próbki wytrzymałościowej po rozerwaniu ze stali S198-1 i wyniki mikroanalizy (Ti,Nb)(C,N) i MnS występujących w jamkach przełomu

Fig. 11. Scanning microphotographs of a fragment of ductile fracture of S198-1 steel strength test sample after rupture and results of microanalysis of (Ti,Nb)(CN) and MnS occurring in small fracture cavities

mieszczonymi węglikami i węglikoazotkami. W wyniku silnego umocnienia wydzieleniowego i umocnienia przez przemianę bainityczną właściwości wytrzymałościowe tych blach są bardzo wysokie przy niskich wartościach udarności. Odmienną mikrostrukturę uzyskały blachy walcowane ze stali S300 i S400 nie zawierających mikrododatków. Przyspieszone chłodzenie bezpośrednio po walcowaniu tych stali doprowadziło do przemian, w wyniku których utworzona mikrostruktura składa się z mieszaniny drobnoziarnistego ferrytu równoosiowego, ferrytu iglastego, perlitu i bainitu. Wytrzymałość i udarność tych stali zależą od struktury dyslokacyjnej ferrytu i udziału objętościowego oraz dyspersji perlitu i bainitu. W wyniku modyfikacji mikrostruktury z ferytyczno-perlitycznej (w stanie wyjściowym przed walcowaniem) na ferytyczno-perlityczno-bainityczną blachy ze stali S300 i S400 po walcowaniu z obróbką cieplnoplastyczną i przyspieszonym chłodzeniu po walcowaniu uzyskały właściwości odpowiadające odpowiednio kategoriom wytrzymałościowym S420ML i S460ML wg normy PN-EN 10025-4, przy wartościach udarności w temperaturze -60° C od 27,2 do 52,6 J, co kwalifikuje blachy do eksploatacji w warunkach arktycznych.

Na podstawie analizy wyników wykonanych badań sformułowano następujące wnioski:

- 1. W ramach istniejących składów chemicznych ustalonych dla stali normalizowanych można przez zastosowanie technologii regulowanego walcowania i przyspieszonego chłodzenia bezpośrednio po walcowaniu zmieniać w szerokim zakresie mikrostrukturę, a tym samym właściwości mechaniczne blach.
- Zastosowanie technologii walcowania niskotemperturowego w obszarze przemiany α + γ i przyspieszonego chłodzenia po walcowaniu dla stali niskowęglowych zawierających mikrododatki stopowe Nb, V, Ti, B prowadzi do silnego umocnienia dyspersyjnego i umocnienia przez przemianę bainityczną i/lub martenzytyczną (bez wydzieleń wolnego ferrytu), w wyniku czego blachy uzyskują wysokie właściwości wytrzymałościowe przy niskich wartościach udarności.

LITERATURA

- Gorynin I., Rybin V., Malyseševskij V., Hlusova E.: Principy legirovaniâ, fazovye prevraščeniâ i svojstva hladostojkih svarivaemyh sudostroitel`nyh stalej, Metallovedenie i termičeskaâ obrabotka metallov, 2007, nr 1, s. 9-15.
- Ujma J., Kawecki R., Cierniak H.: Blachy konstrukcyjne ze stali niskowęglowych wytwarzane według technologii TMRP + ACC MULPIC, materiały konferencyjne: Stal tworzywem XXI wieku, EXPO Silesia 2008, s. 32-39.
- Gawor J., Garbarz B., Woźniak D. i inni: Projektowanie parametrów obróbki cieplno-plastycznej blach grubych z nowoczesnych stali na konstrukcje morskie o zwiększonej odporności na kruche pękanie, Archiwum Technologii Maszyn i Automatyzacji, kwartalnik, v. 30, nr 3, Wydawnictwo Politechniki Poznańskiej, 2010, s. 111-119.
- 4. Gawor J., Woźniak D., Zalecki W.: Kształtowanie mikrostruktury i właściwości blach grubych ze stali konstrukcyjnej z zastosowaniem kompleksowej obróbki cieplno-plastycznej i regulowanego chłodzenia po walcowaniu, Seminarium Stal dla Nowoczesnego Społeczeństwa, Technologie i Wyroby, Prace Instytutu Metalurgii Żelaza, t.62, 1/2010, s. 168-173.
- Misra R. D. K., Natkani H., Hartmann J. E., Siciliano F.: Microstructural evolution in a new 770 MPa hot rolled Nb-Ti microalloyed steel, Material Science and Engineering, A 394 (2005), s. 339-352.
- Yi Hai-Long, Du Lin-Xiu, Wang Guo-Dong, Liu Xiang-Hua: Development of Hot-rolled Low Carbon Steel with High Yield Strength.

- Funakawa Yoshimasa, Shiozaki Tsuyoshi, Tomita Kunikazu, Yamamoto Tetsuo, Maeda Eiji: Development of High Strength Hot-rolled Sheet Steel Consisting of Ferrite and Nanometer – sized Carbides, ISIJ Inernational, vol. 44 (2004), nr 11, s. 1945-1951.
- Xinping Mao, Xiangdong Huo, Xinjun Sun, Yizhong Chai: Strengthening mechanisms of New 700 MPa hot rolled Ti – microalloyed steel produced by compact strip production, Journal of Materials Processing Technology, 210 (2010), s. 1660-1666.
- Gawor J., Marcisz J. i inni: Sprawozdanie IMŻ z pracy Nr S0-0677, Gliwice, 2008
- Gawor J., Marcisz J.: Sprawozdanie IMŻ Nr S0-0711, Gliwice, 2009
- Woźniak D., Gawor J. i inni: sprawozdanie IMŻ z pracy Nr S0-0760, Gliwice, 2010
- Gawor J., Woźniak D. i inni: sprawozdanie IMŻ z pracy Nr S0-0781, Gliwice, 2011
- Jaglarz Z., Leskiewicz W., Morawiecki M.: Technologia i urządzenia walcowni wyrobów płaskich. Wydawnictwo "Śląsk", Katowice, 1979
- Hensel A., Spittel T.: Kraft- und Arbeitsbedarf bildsamer Formgebungsverfahren. VEB Deutscher Verlag für Groundstoffindustrie, Leipzig, 1978.
- 15. Standard Practice for Quantitative Measurement and Reporting of Hypoeutectoid Carbon and Low-Alloy Steel Phase Transformations. ASTM Committee A01 on Steel, Stainless Steel and Related Alloys. Published March 2004.