PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fitoremediacja - niedoceniony potencjał roślin w oczyszczaniu środowiska

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Phytoremediation - the underestimated potential of plants in cleaning up the environment
Języki publikacji
PL
Abstrakty
PL
Zanieczyszczenie metalami ciężkimi jest problemem o charakterze globalnym. Ze względu na swoje właściwości, metale ciężkie stanowią bardzo specyficzną klasę zanieczyszczeń. W wyniku działalności człowieka i rozwoju przemysłu stężenie metali w glebach wzrasta drastycznie, a ich nawet jednorazowa depozycja powoduje, że mogą pozostać w ekosystemie wodnym lub glebowym przez wiele lat zmieniając tylko formy w jakich występują. Obiecujące możliwości usuwania metali z gleb daje zastosowanie roślin w procesach remediacji. Fitoremediacja obejmuje różnorodne techniki rekultywacji, prowadzi do usuwania zanieczyszczeń z gleby (fitoekstrakcja) lub unieruchamiania (fitostabilizacja), gdzie stworzone warunki glebowe jak i okrywa roślinna powodują zmniejszenie mobilności metali ciężkich. Fitoekstrakcja wykorzystuje niezwykłą zdolność roślin tzw. hiperakumulatorów do kumulowania metali w pędach nadziemnych, które w dalszym etapie procesu mogą zostać usunięte. Technika ta posiada swoje ograniczenia jak i zalety, ale generalnie uważana jest jako przyjazna dla środowiska, ekonomiczna, mało ingerująca w ekosystemy i akceptowalna społecznie. Warunki glebowe oraz stężenie zanieczyszczeń muszą mieścić się w zakresie tolerancji rośliny, co stanowi pewne ograniczenie w stosowaniu metody. Technika ta jest powszechnie postrzegana jako alternatywa dla ingerujących w ekosystem metod fizycznych. Stosowanie metod inżynierii genetycznej oraz poszukiwanie gatunków o odpowiednich cechach otwiera nowe możliwości dla fitoremediacji.
EN
Heavy metal pollution is worldwide problem. Due to their immutable nature, heavy metals are unique class of toxicants. As a result of human activities and onset of industrial revolution, concentration of heavy metals has increased drastically, causing acute and diffuse contamination of soil. Once the heavy metals contaminate the soil or water ecosystem, they remain for many years. Toxic metals can only be remediated by removal from soil. Plant-based remediation techniques are showing increasing promise for use in soils contaminated with heavy metals. Phytoremediation includes a variety of remediation techniques primarily leading to contaminant removal (phytoextraction) or immobilization (phytostabilization), where soil conditions and vegetative cover are manipulated to reduce the heavy metals mobility. Phytoextraction uses the remarkable ability of hyperaccumulator plants to concentrate metals from the environment into the harvestable parts of above ground shoots. This technique has limitations and advantages. Phytoremediation is environmental friendly, a cost-effective, non-intrustive, aesthetically pleasing and socially accepted. Soil conditions and pollutant concentrations must be within the limits of plant tolerance. This technique is widely viewed as the ecologically responsible alternative to the destructive physical remediation methods. Improvement of plants by genetic engineering and screening appreciate plant species opens up new possibilities for phytoremediation.
Rocznik
Strony
276--280
Opis fizyczny
Bibliogr. 50 poz.
Twórcy
autor
autor
  • Politechnika Częstochowska, Instytut Inżynierii Środowiska
Bibliografia
  • [1] Garbisu C, and Alkorta I.: Basic concepts on heavy metal soil bioremediation. European Journal of mineral procession and Environmental Protection, 3,58-66 (2003).
  • [2] Alkorta I., Hernandez-Alica J., Becerril J.M., Amezaga I., Albizu I., and Garbisu C: Recent findings on the phytoremediation of soils contaminated with enyironmentally toxic heavy metals and metalloids such as zinc, cadmium, lead and arsenie. Reviews in Environmental Science and Bio/Technology, 3,71-90 (2004).
  • [3] Lasat M.M.: Phytoextractoin of toxic metals - A revive of biological mechanisms. Journal of Environmental Quality, 27(1), 165-168 (2002).
  • [4] Singh O.V., Labana S., Pandey G., Budhiraja R., and Jain R.K.: Phytoremediation: an overview of metallicion decontamination from soil. Applied Microbiology and Biotechnology, 36,3706-3710 (2003).
  • [5] Chehregani A., Noori M., Yazdi H.L.: Phytoremediation of heavy-metal-polluted soils: screening for new accumulator plants in Angouran mine (Iran) and evaluation of removal ability. Ecotoxicology and Environmental Safety,72,1349-1353(2009).
  • [6] Baudouin C, Charveron M., Tarrouse R., and Gali Y.: Environmental pollutants and skin cancer. Celi Biology and Toxicology, 18, 341-348 (2002).
  • [7] Bodar C.W., Pronk M.E., Sijm D.T.: The European Union risk assessment on zinc and zinc compounds: the process and the facts. Integrated Environmental Assessment and. Management. 1,301-319 (2006).
  • [8] Doumett S., Lamperi L., Checchini L., Azzarello E., Mungai S., Mancuso S., Petruzzelli G., Del Bubba M.: Heavy metal distribution between contaminated soil and Paulwonia tomentosa, in a pilot-scale assisted phytoremediation study: influence of different complexing agents. Chemosphere, 72, 1481-1490 (2008).
  • [9] Fotakis G., Timbrell J.A.: Role of trace elements in cadmium chloride uptake in hepatoma cell lines. Toxicology Letters, 164, 97-103 (2006).
  • [10] Sawidis T.: Effect of cadmium on pollen germination and tube growth in Lilium longiflorum and Nicotiana tabacum. Protoplasma, 233, 95-106 (2008).
  • [11] Stoltz E. and Greger M.: Accumulation properties of AS, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings. Environmental and Experimental Botany, 47(3), 271 -280 (2002).
  • [12] Schutzendubel A., and Polle A.: Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. Journal of Experimental Botany 53:1351-1365 (2002).
  • [13] Padmavathiamma P. and Li L.Y.: Phytoremediation Technology: Hyper-accumulation Metals in Plants. Water, Air, and Soil Pollution, 184, 105-126 (2007).
  • [14] Raskin I., Smith R.D. and salt D.E.: Phytoremediation of metals: using plants to remove pollutants from the environment. Current Opinion in Biotechnology, 8, 221-226 (1997).
  • [15] Garbisu C. and Alkorta I.: Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresource Technology, 11,229-236 (2001).
  • [16] Garbisu C, Hernandez-Allica J., Barrutia O., Alkorta I. and Becerril J.M.: Phytoremediation: A technology using green plants to remove contaminants from polluted areas. Rev. Environ. Health, 17, 75-90 (2002).
  • [17] Hughes J.B., Shanks J., Vanderford M., Lauritzen J. and Bhadra R.: Transformation of TNT by aquatic plants and plant tissue cultures. Environmental Science and Technology, 31, 266-271 (1997).
  • [18] Meagher R.B.: Phytoremediation of toxic elemental and organic pollutants. Current Opinion in Plant Biology. 3,153-162(2000)
  • [19] Jabeen R., Ahmad A., Iqbal M.: Phytoremediation of Heavy Metals: Physiological and Molecular Mechanisms. Botanical Review, 75,339-364 (2009).
  • [20] Gang W., Hubiao K., Xiaoyang Z., Hongbo Shao., Liye C, Chengjiang R.: A critical review on the bio-removal of hazardous heavy metals from contaminated soils: Issues, progress, eco-environmental concerns and opportunities. Journal of Hazardous Materials, 174, 1-8(2010).
  • [21] Tong Y., Kneer P. and Zhu Y.G.: Vacuolar compartmentalization: a second-generation approach to engineering plants for phytoremediation. Trends Plants and Science, 9,7-9 (2004).
  • [22] Sheoran V., Sheoran A.S., Poonia P.: Phytomining: A review. Minerals Engineering, 22, 1007-1019 (2009).
  • [23] Wei S., Teixeira da Silva J.A., Zhou Q.: Agro-improving method of phytoextracting heavy metal contaminated soil. Journal of Hazardous Materials, 150, 662-668 (2008).
  • [24] Kavamura V.N., Esposito E.: Biotechnological strategies applied to the decontamination of soils polluted with heavy metals. Biotechnology Advances, 28,61-69 (2010).
  • [25] Eapen S., SuseelanK.N.,TivarekarS., Kotwal S.A.,MitraR.: Potential for rhizofiltration of uranium using hairy root cultures of Brassica juncea and Chenopodium amaranticolor. Environmental Research, 91, 127-133 (2003).
  • [26] January M.C., Cutright T.J., Van Keulen H., Wei R.: Hydroponic phytoremediation of Cd, Cr, Ni, As, and Fe: can Helianthus annuus hyperaccumulate multiple heavy metals? Chemosphere, 70, 531-7 (2008).
  • [27] Panfili F., Manceau A., Sarret G., Spadini L., Kirpichtchikova T., Bert V., et al.: The effect of phytostabilization on Zn speciation in a dredged contaminated sediment using scanning electron microscopy, X-ray fluorescence, EXAFS speetroscopy, and principal components analysis. Geochimica et Cosmochimica Acta, 69,2265-2284 (2005).
  • [28] Vazquez S., Agha R., Granado A., Sarro M.J., Esteban E., Penalosa J.M., et al.: Use of white lupin plant for phytostabilization of Cd and As polluted acid soil. Water, Air and Soil Pollution, 177, 349-365(2006).
  • [29] Brunner I., Lustera J., Gunthardt-Goerga M.S., Frey B.: Heavy metal accumulation and phytostabilisation potential of tree fine roots in a contaminated soil. Environmental Pollution, 15, 559-568 (2008).
  • [30] Newman L.A, Reynolds C.M.: Phytodegradation of organic compounds. Current Opinion in Biotechnology, 15,225-30 (2004).
  • [31] Kidd P., Barcelo J., Bernal M.P., Navari-Izzo F., Poschenrieder C, Shilev S., Clemente R., Monterroso C: Trace element behavior at the root-soil interface: Implications in phytoremediation. Environmental and Experimental Botany, 67,243-259 (2009).
  • [32] Prasad M.N.V, and Freitas H.: Metal hyperaccumulation in plants-Biodiversity prospecting for phytoremediation technology. Electronic Journal of Biotechnology, 6, 275-321 (2003).
  • [33] Sas-Nowosielska A., Kucharski R., Małkowski E., Pogrzeba M., Kuperberg J.M. Kryński K.: Phytoextraction crop disposal - an unsolved problem. Environmental Pollution, 128,373-379 (2004).
  • [34] McGrath S.P., Zhao F.J. and Lombi E.: Phytoremediation of metals, metalloids, and radionuclides. Advances in Agronomy, 75,1-56 (2002)
  • [35] Liang H.M., Lin T.H., Chiou J.M., Yeh K.C.: Model evaluation of the phytoextraction potential of heavy metal hyperaccumulators and non-hyperaccumulators. Environmental Pollution, 157,1945-1952(2009).
  • [36] Reevers R.D., Baker A.J.M.: Metal accumulating plants. In: Raskin I., Ensley B.D. (edt.): Phytoremediation of Toxic Metals. Using Plants to Clean up the Environment. John Wiley and Sons, Inc., New York, 193-229 (2000).
  • [37] Thangavel P, and Subhuram CV.: Phytoextraction -Role of hyper accumulators in metal contaminated soils. Proceedings of the Indian National Science Academy. Part B, 70(1), 109-130 (2004).
  • [38] Robinson B.H., Mills T.M., Petit T., Fung L.E., Green S.R., Clothier B.E.: Natural and induced cadmium-accumulation in poplar and willow: implications for phytoremediation. Plant Soil, 227,301 -306 (2000).
  • [39] Zhang X., Xia H., Li Z., Zhuang P., Gao B.: Potential of four grasses in remediation of Cd and Zn contaminated soils. Bioresource Technology, 101,2063-2066,(2010).
  • [40] Tandy S„ Schulin R., and Nowack B.: The influence of EDDS on the uptake of heavy metals in hydroponically grown sunflowers. Chemosphere, 62(9), 1454-1463 (2006).
  • [41] Cooper E.M., Sims J.T., Counningham S.D., Huang J.W., and Berti W.R.: Chelate- assisted phytoextraction of lead from contaminated soil. Journal of Environmental Quality, 28, 1709-1719 (1999).
  • [42] Huang J.W., Chen J., Berti W.R., and Counningham S.D.: Phytoremediation of lead contaminated soil: Role of synthetic chelates in lead phytoextraction. Environmental Science and Technology, 31(3), 800-805(1997).
  • [43] Luo CL., Shen Z.G., Li X.D., and Baker A.J.M.: Enhanced phytoextraction of Pb and other metals from artificially contaminated soils trough the combined application of EDTA and EDDS. Chemosphere, 63(10), 1773-178 (2006).
  • [44] Santos F.S., Hernandez-Allica L., Becerril J.M., Amaral-Sobrinho N., Mazur N., Garbisu C: Chelate-induced phytoextraction of metal polluted soils with Brachiaria decumbens. Chemosphere, 65,43-50 (2006).
  • [45] Eapen S., and D'Souza S.F.: Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnology Advances, 23, 97- 114 (2005).
  • [46] Suresh B., and Ravishankar G.A.: Phytoremediation - A novel and promising approach for environmental clean-up. Critical Reviews in Biotechnology, 24,97-124 (2004).
  • [47] Schnoor J.L.: Phytostabilization of metals using hybrid poplar trees . 133-150. W: I. Raskin and Y.B.D. Ensley eds. Phytoremediation of toxic metals: using plants to c lean-up the environment. Wiley, New York (2000).
  • [48] Adriano D.C., Wenzel W.W., Vangronsveld J., and Bolan N.S.: Role of assisted natural remediation in environmental cleanup. Geoderma, 122, 121-142(2004).
  • [49] Kacprzak M.: Wspomaganie procesów remediacji gleb zdegradowanych. Seria MONOGRAFIE 128. Wydawnictwo Politechniki Częstochowskiej, Częstochowa (2007).
  • [50] Yoon J., Cao X., Zhou Q., and Ma L.Q.: Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of The Total Environment, 368 (2-3), 456-164 (2006).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAR8-0009-0100
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.