Magdalena Zielińska Katedra Inżynierii i Aparatury Procesowej oraz Gospodarki Energią Ireneusz Białobrzewski, Marek Markowski, Ryszard Myhan Katedra Inżynierii Procesów Rolniczych Uniwersytet Warmińsko-Mazurski w Olsztynie

WYKORZYSTANIE MODELU QUASI - STACJONARNEGO DO OPISU KINETYKI SUSZENIA MARCHWI W ZŁOŻU FLUIDALNO-FONTANNOWYM

Streszczenie

Przedstawiono weryfikacjê sformu³owanych przez Kudrê i Efremova [2003] quasi- stacjonarnych modeli kinetyki suszenia. Wyniki weryfikacji modeli zilustrowano wykresami modeli i dla porównania wynikami pomiarów kinetyki suszenia kostki marchwi w z³o¿u fluidalno-fontannowym. Niskie wartoœci bezwzglêdnego lokalnego b³êdu aproksymacji quasi - stacjonarnego modelu zmian temperatury materia³u w procesie suszenia kostki marchwi w z³o¿u fluidalno-fontannowym, œwiadcz¹ o zadowalaj¹cym dopasowaniu modelu do danych eksperymentalnych.

Słowa kluczowe: marchew, suszenie, z³o¿e fluidalno-fontannowe, model quasi-stacjonarny

Oznaczenia

- *t_p temperatura powietrza suszącego,* °C
- *t_m temperatura materiału,* °C
- *t_M temperatura mokrego termometru*, °C
- u zawartość wody, kg wody/kg s.s.
- *u*_r równowagowa zawartość wody, kg wody/kg s.s.
- *u*₀ początkowa zawartość wody, kg wody/kg s.s.
- U_R zredukowana zawartość wody opisana równaniem (1)
- D współczynnik dyfuzji masy [m²/s]
- *k kinetyczny* współczynnik desorpcji [m/s]
- K współczynnik suszarniczy [min-1]
- n parametr w formule empirycznej (1)
- σ parametr w formule empirycznej (1), min
- *ψ* znormalizowana szybkość suszenia

 τ - czas, min

err - lokalny bezwzględny błąd aproksymacji, °C

emp - empiryczne

mod - modelowe

Wprowadzenie

Wæród nowoczesnych metod suszarniczych metoda suszenia fluidalno-fontannowego zajmuje wa¿n¹ pozycjê. Proces suszenia marchwi by³ przedmiotem badañ wielu autorów [Lin i in. 1998; Litvin i in. 1998; Sanga i in. 2002; Mulet i in. 1989]. Jednak¿e analiza aktualnego stanu wiedzy na temat suszenia surowców spo¿ywczych wskazuje na brak informacji dotycz¹cych suszenia marchwi w z³o¿u fluidalno-fontannowym. W literaturze przedstawiane s¹ trzy rodzaje modeli kinetyki konwekcyjnego suszenia produktów rolniczych: teoretyczne, empiryczne oraz semi-empiryczne. Pewne ograniczenia zwi¹zane z zastosowaniem empirycznych modeli do opisu kinetyki suszenia mog¹ byæ wyeliminowane przez wykorzystanie modeli semi-empirycznych.

Teoretyczne podstawy modelowania pierwszego okresu suszenia warzyw, owoców i grzybów z uwzglêdnieniem skurczu suszarniczego opracowano w ostatnim dziesiêcioleciu [Pabis 1994, 1999; Pabis, Jaros 2002; Markowski 1995, 1998]. W literaturze mo¿na znaleŸæ prace dotycz¹ce interpretacji danych doœwiadczalnych, z których wynika, ¿e równania wyprowadzone przy zastosowaniu za³o¿enia quasi-stacjonarnoœci procesu dobrze opisuje eksperyment [Kudra i in. 2003]. Przydatnoœæ równañ wyprowadzonych przy zastosowaniu za³o¿enia quasi-stacjonarnoœci procesu zosta³a potwierdzona dla takich materia³ów, jak ceg³a, we³na, bawe³na, polietyren, pszenica, kukurydza, seler. Materia³ nieruchomy, w z³o¿u fontannowym, w z³o¿u wiruj¹cym czy z³o¿u pulsacyjno-fluidalnym. Jednak¿e brak w literaturze informacji dotycz¹cych przydatnoœci tych równañ dla materia³ów o du¿ym skurczu.

Celem pracy by³o sprawdzenie, czy równania wyprowadzone na podstawie za-³o¿enia quasi-stacjonarnoœci procesu suszenia mog¹ byæ przydatne do opisu zmian zawartoœci wody i temperatury materia³u w czasie suszenia w z³o¿u fluidalno-fontannowym materia³ów o du¿ym skurczu.

Materiał i metodyka

Do modelowania procesu suszenia kostki marchwi w z³o¿u fluidalno-fontannowym wykorzystano nastêpuj¹ce równania wyprowadzone przy za³o¿eniu quasi-stacjonarnoœci procesu [Kudra i in. 2003], które opisuj¹ zmianê zawartoœci wody i temperatury materia³u w czasie suszenia:

$$U_{R} = \frac{u(\hat{o}) - u_{r}}{u_{o} - u_{r}} = \frac{1}{1 + \left(\frac{\hat{o}}{\hat{o}}\right)^{n}}$$

$$t_{m} = t_{p} - \check{r} \left(t_{p} - t_{M}\right)$$
(1)

Zastosowano tu quasi-stacjonarne podejœcie do problemu, które polega na potraktowaniu procesu nieustalonego jako ustalonego w pewnych warunkach. Jednym z przyk³adów w suszeniu jest za³o¿enie, ¿e nieustalona wymiana ciep³a miêdzy gazem a materia³em jest opisana równaniem Newtona, które dotyczy procesu ustalonego. Zalet¹ tych równañ jest prostota i ³atwoœæ zastosowania. Pozwalaj¹ one na dok³adny opis kinetyki suszenia na podstawie niewielkiej iloœci danych eksperymentalnych.

Empiryczna interpretacja parametru δ [Efremov 2002] jest nastêpuj¹ca:

$$\dot{o} = \frac{D}{dk^2}
 \tag{3}$$

WartoϾ znormalizowanej szybkoœci suszenia mo¿na obliczyæ wed³ug formu³y:

$$\check{r} = \frac{N}{N_0} = \exp(-K\hat{o}) \tag{4}$$

gdzie:

$$N = \frac{dU_R}{d\hat{o}}$$
(5)

Do badañ u¿yto przemys³owej odmiany marchwi Macon, pochodz¹cej z uprawy Zak³adu Warzywniczego w Skierniewicach. Bezpoœrednio po zbiorze marchew poddano procesowi suszenia. Marchew wstêpnie blanszowano w wodzie z dodatkiem trójfosforanu sodowego. Proces prowadzono przez 4 minuty w temperaturze 95°C. Materia³ krojono w kostkê o boku 10 mm i suszono w z³o-¿u fluidyzacyjnym. Pocz¹tkowa zawartoœæ wody w materiale wynosi³a oko³o 7 kg wody/kg s.s. Temperatura czynnika susz¹cego wynosi³a 60°C, 70°C, 80°C i 90°C, a prêdkoœæ przep³ywu powietrza 4,5 m/s. Pocz¹tkowa wysokoœæ nieruchomego z³o¿a wynosi³a 0,1 m, wysokoœæ warstwy fontannuj¹cej 0,5 m. Za pomoc¹ termopar mierzono: temperaturê czynnika susz¹cego na wlocie, w z³o¿u oraz temperaturê materia³u, z 30-sekundowym krokiem czasowym. Rejestrowano pomiar wilgotnoœci powietrza otaczaj¹cego, gdzie krok czasowy wynosi³ 10 minut. Temperaturê materia³u mierzono termopar¹ umieszczon¹ w kostce marchwi zawieszonej w z³o¿u. Podczas procesu suszenia obserwowano nierównomierne mieszanie z³o¿a w zale¿noœci od odleg³oœci od œcian bocznych komory suszenia. Struktura fontannuj¹cego z³o¿a zmienia³a siê w sposób przypadkowy, co by³o spowodowane nieregularn¹ chwilow¹ prêdkoœci¹ przep³ywu powietrza w przekroju poprzecznym.

Jako kryterium oceny wybranych modeli przyjêto wspó³czynnik determinacji oraz wartoœæ lokalnego bezwzglêdnego b³êdu estymacji temperatury, gdzie b³¹d zdefiniowany by³ wed³ug formu³y:

$$\operatorname{err}(\tau) = t(\tau)_{\operatorname{emp}} - t(\tau)_{\operatorname{mod}}$$
(6)

Do wyznaczenia temperatury mokrego termometru zastosowano empiryczny model opisuj¹cy zale¿noœæ temperatury mokrego termometru od temperatury powietrza i zawartoœci wody w powietrzu [Weiss, 1977]. Do utworzenia regresyjnego modelu wilgotnoœci zastosowano model neuronowy zbudowany przy wykorzystaniu pakietu MATLAB TOOLBOX NEURAL NETWORKS (Demuth, Beale 2001].

Wyniki i dyskusja

Rysunek 1 przedstawia kinetykê zmian zredukowanej zawartoœci wody wyliczon¹ z równania (1) oraz dane eksperymentalne. Wysoka wartoœæ wspó³czynnika determinacji quasi-stacjonarnego modelu zredukowanej zawartoœci wody œwiadczy o tym, ¿e wartoœci parametru *n* otrzymane dla poszczególnych temperatur zosta³y poprawnie oszacowane. Maksymaln¹ wartoϾ wspó³czynnika determinacji 0,996 uzyskano dla temperatury 90°C, natomiast minimaln¹ 0,992 dla temperatury 60°C. Powy¿sze obserwacje pozwalaj¹ na stwierdzenie, ¿e zastosowanie quasi-stacjonarnego modelu zredukowanej zawartoœci wody pozwala na prawid³owy opis kinetyki suszenia kostki marchwi w danych warunkach prowadzenia procesu.

Charakterystyczne parametry uzyskane dla kostki marchwi suszonej w z³o¿u fontannowym powietrzem o temperaturze 60°C, 70°C, 80°C i 90°C przedstawiono w tabeli 1. Zmniejszanie siê σ ze wzrostem temperatury powietrza susz¹cego jest uzasadnione zwiêkszaniem siê szybkoœci suszenia. Zaobserwowano wyraŸny wzrost parametru *n* wraz ze wzrostem temperatury.

Jest to sprzeczne z obserwacj¹ niezale¿noœci wartoœci parametru *n* od temperatury, opisan¹ przez Kudrê i Efremova [2003] dla plasterków korzenia selera suszonego w z³o¿u pulso-fluidalnym [Glaser 1993]. Kudra i Efremov [2003] stwierdzili, ¿e prêdkoœæ wzglêdna miêdzy czynnikiem susz¹cym a suszonym materia³em nie jest jedyn¹ wielkoœci¹ wp³ywaj¹c¹ na wartoœæ *n*. W pracy stwierdzono, ¿e parametr *n* roœnie proporcjonalnie ze wzrostem temperatury czynnika susz¹cego. Powodem wzrostu wartoœci parametru *n* mo¿e byæ pulsuj¹ca prêdkoœæ przep³ywu powietrza w przekroju poprzecznym. Jest to prawdopodobnie zwi¹zane ze skurczem materia³u, który zale¿y m.in. od temperatury czynnika susz¹cego i szybkoœci suszenia.

Podczas procesu obserwowano gwa³towne fluktuacje prêdkoœci powietrza spowodowane lokaln¹ niestabilnoœci¹ przep³ywu czynnika susz¹cego. Uzasadniona jest wiêc hipoteza, ¿e parametr *n* jest z³o¿on¹ funkcj¹ innych parametrów, które wp³ywaj¹ na hydrodynamikê z³o¿a, np. temperatura, skurcz, gêstoϾ materia³u. W celu okreœlenia tej zale¿noœci nale¿a³oby przeprowadziæ dalsze badania.

Rys.1. Wyniki pomiarów (emp) i symulacji (mod) zredukowanej zawartości wody w kostce marchwi suszonej w złożu fontannowym w temperaturze 60°C, 70°C, 80°C i 90°C

Fig. 1. Results of measurements (emp) and simulation (mod) of the moisture ratio in carrot slices dried in a fountain bed at the temperature of 60, 70, 80 and 90 deg C

Magdalena Zielińska+zespół

Tabela 1. Charakterystyczne parametry uzyskane dla kostki marchwi suszonej w złożu fontannowym powietrzem o temperaturze 60^oC, 70^oC, 80^oC i 90^oC.

Table 1. Characteristic parameters obtained at drying of carrot slices in a fountain bed at air temperatures 60, 70, 80 and 90 deg C

	t _p = 60°C	t _p = 70°C	t _p = 80°C	t _p = 90°C
uo	7,14	6,97	6,80	6,44
Xr	0,11	0,08	0,02	0,013
n	1,38	1,46	1,51	1,63
σ	13,95	12,02	11,02	10,23

Rysunek 2 przedstawia wyniki pomiarów temperatury kostki marchwi suszonej w z³o¿u fontannowym. Na rysunku 3 przedstawiono symulowane wartoœci temperatury materia³u wyliczone z równania (2), natomiast rozk³ady lokalnego b³êdu bezwzglêdnego temperatury materia³u przedstawiono na rysunku 4.

Maksymalny, lokalny b³¹d bezwzglêdny aproksymacji temperatury materia³u zaobserwowano na pocz¹tku procesu suszenia. By³ on prawdopodobnie spowodowany tym, ¿e temperatura materia³u oraz temperatura czynnika susz¹cego nie by³y sta³e. WartoϾ tego b³êdu wynosi³a 19,5°C dla temperatury czynnika susz¹cego 90°C, natomiast dla temperatury czynnika susz¹cego 60°C wynios³a 9°C. Mo¿na zatem stwierdziæ, ¿e im wy¿sza temperatura czynnika susz¹cego tym wy¿sza by³a pocz¹tkowa wartoœæ maksymalnego lokalnego b³êdu bezwzglêdnego temperatury materia³u.

W pocz¹tkowym okresie suszenia obserwowano intensywny wzrost temperatury materia³u, przy czym czas nagrzewania materia³u wzrasta³ wraz ze wzrostem temperatury czynnika susz¹cego. Temperatura z³o¿a by³a ni¿sza ni¿ temperatura czynnika susz¹cego i osi¹ga³a wartoœci zbli¿one do temperatury czynnika susz¹cego po 13, 17, 20 i 26 minutach odpowiednio dla temperatury 60°C, 70°C, 80°C, 90°C.

Wy³¹czaj¹c wstêpny okres nagrzewania materia³u œredni lokalny bezwzglêdny b³¹d aproksymacji temperatury materia³u wynosi³ 2^oC. Zatem mo¿na wnioskowaæ, ¿e poza wstêpnym okresem procesu suszenia quasi-stacjonarny model w zadowalaj¹cy sposób opisuje temperaturê cz¹stek materia³u suszonych w z³o¿u fluidalno-fontannowym. Jest to szczególnie wa¿ne w przypadku suszenia materia³ów wra¿liwych na dzia³anie temperatury.

Fig. 2. Measured temperature of carrot slices dried in a fountain bed at the temperature of 60, 70, 80 and 90 deg C

Fig. 3. Simulated temperature of carrot slices dried in fountain bed at the temperature of 60, 70, 80 and 90 deg C

Magdalena Zielińska+zespół

Rys.4.Rozkład lokalnego bezwzględnego błędu aproksymacji temperatury materiału Fig. 4. Distribution of local absolute error of approximation for material temperature

Wnioski

Równania wyprowadzone wed³ug zmodyfikowanej quasi-stacjonarnej metody mog¹ byæ wykorzystane do modelowania zmian wilgotnoœci i temperatury materia³u podczas suszenia kostki marchwi w z³o¿u fluidalno-fontannowym. Na podstawie przeprowadzonego eksperymentu mo¿na stwierdziæ, ¿e parametr *n* w modelu quasi-stacjonarnym, œwiadcz¹cy o intensywnoœci kontaktu czynnika susz¹cego z materia³em, roœnie proporcjonalnie ze wzrostem temperatury czynnika susz¹cego.

Parametr *n* nie jest wiec prost¹ funkcj¹ prêdkoœci czynnika susz¹cego, lecz $z^{3}o_{i}on^{1}$ funkcj¹ kilku parametrów, które wp³ywaj¹ na hydrodynamikê $z^{3}o_{i}a$, np. temperatura, skurcz, gêstoœæ materia³u, kszta³t cz¹stki.

Praca naukowa finansowana ze środków Komitetu Badań Naukowych w latach 2004-2005 jako projekt badawczy nr 2 P06T 024 26.

Bibliografia

Demuth H. Beale M. 2001. Neural network toolbox for use with MATLAB. The MathWorks, Inc

Efremov G.I., 2001. Macrokinetics of transfer processes. MGTU, Moscow, s. 289

Efremov G.I. 2002. Drying kinetics derived from diffusion equation with flux-type boundary conditions. Drying Technology, 20(1): 55-66

Glaser R. 1993. Hydrodynamika i kinetyka w procesie suszenia w warstwie pulso-fluidalnej materia³ów trudnofluidyzuj¹cych (na przyk³adzie krajanek korzeni warzyw). In¿ynieria Chemiczna i Procesowa, 2; 407-422

Kudra T., Efremov G.I. 2003. A quasi - stationary approach to drying kinetics of fluidized particulate materials. Drying Technology, Vol.21,No.6: 1077-1090

Lin T.M., Durance T.D., Scaman C.H. 1998. Characterization of vacuum, microwave, air and freeze dried carrot slices. Food Research International, 31(2): 111-117

Litvin S., Mannheim C.H., Miltz J. 1998. Dehydration of carrots by a combination of freeze drying, microwave heating and air or vacuum drying. Journal of Food Engineering, 36: 103-111

Markowski M. 1995. Matematyczne modelowanie procesów konwekcyjnego suszenia warzyw. Acta Academiae Agriculturae AC Technicae Olstenensis, Agricultura, 61, Supplementum A: 1-72

Markowski M. 1998. Air drying of onion: some theoretical considerations. Drying Technology, 16: 877-888

Mulet A., Berna A., Rosello S., Pinaga F. 1989. Drying of carrots. II. Drying models. Drying Technology, 7(4): 641-661

Pabis S. 1994. Uogólniony model kinetyki suszenia warzyw i owoców w pierwszym okresie. Zesz. Probl. Post. Nauk Roln., 417,:15-34

Pabis S. 1999. The initial phase of convection drying of vegetables and mushrooms and the effect of shrinkage. Journal of Agricultural Engineering Research, 72: 187-195

Pabis S., Jaros M. 2002. The first period of convection drying of vegetables and the effect of shape-dependent shrinkage. Biosystems Engineering, 81 (2): 201-211

Sanga E.C.M., Mujumdar A.S., Raghavan G.S.V. 2002. Simulation of convection - microwave drying for a shrinking material. Chemical Engineering and Processing, 41: 487-499

Weiss A. 1977. Algorithms for the calculation of moist air properties on a hand calculator. Transactions of the ASAE: 1133-1136

APPLICATION OF A QUASI-STATIONARY MODEL TO DESCRIBING THE KINETICS OF CARROT DRYING IN FLUIDIZED-FOUNTAIN BED

Summary

Paper presented the veryfication of quasi-stationary models of drying kinetics, formulated by Kudra and Efremov. The results of models' veryfication were illustrated by diagrams of the models, as well as - for comparison purposes - by the measurement results dealing with drying of carrot slices in a fluidized - fountain bed. Low values of local absolute error of approximation for quasi-stationary model of the dynamics in material temperature changes during drying of the carrot slices in a fluidized - fountain bed, showed satisfactory fitting of the model to experimental data.

Key words: carrot, drying, fluidized-fountain bed, quasi-stationary model

Recenzent: Stanisław Pabis