PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Właściwości kompozytów polimerowych PE+talk

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Structure and properties of PE+talc polymeric composites
Języki publikacji
PL
Abstrakty
PL
Właściwości mechaniczne i przetwórcze kompozytów polimerowych mogą być w pewnym przedziale regulowane poprzez odpowiedni dobór ich składu. Zwiększenie zawartości napełniacza powoduje obniżenie skurczu przetwórczego, wzrost modułu sprężystości wzdłużnej Younga, prawie stałą wartość granicy plastyczności oraz zmniejszenie wydłużenia względnego przy zerwaniu i wydłużenia względnego przy maksymalnym naprężeniu.
EN
The influence of mineral filler on the mechanical properties like Young's modulus, yield strength and shrinkage of polyethylene has been investigated. Low density polyethylene (FABS 23-D022) was used as matrix polymer; for the characteristics see Table 1. Talc as modifying additive (the properties of the filler are shown in Table 2) was dispersed in the polymer matrix. The mixture of polyethylene with talc was homogenised by use of Brabender kneader where the master batch procedure was applied. Consequently, the blends of LDPE with talc as filler, in the composition range between 0.1 and 10 wt.%, were compounded by means of an molten extrusion mixing, using an extruder FAIREX with screw dimensions diameter = 35, L/D = 24. To assure a sufficient homogenisation quality of the blends, e.g. a good dispersion of the filler in the LDPE matrix, a double extrusion process was applied for all compositions. Thus, the samples for mechanical tensile tests, with thickness of 3 and 1 mm, were produced by injection moulding using an ARBURG 1300 UN. The longitudinal shrinkage of the injection moulded samples was determined using the length of the mould cave as a basic value. The tensile tests, according to the PN-81/C-89034, were performed using a TIRA Test 2200 universal tensile machine. The measurements of the mechanical properties were realised for samples with various thickness (3 and 1 mm, respectively) as well with different talc - content, between 0 and 10 wt.% (Figs 3 to 5). Significantly higher shrinkage values for samples with thickness of 3 mm, in comparison with 1 mm samples, was noted. In both cases a decrease of shrinkage first for a higher talc concentration was observed (Fig. 1). It was also found that the difference between shrinkage values, for both investigated samples thickness, is strongly related to the talc content (Fig. 2). The addition of the mineral filler to the polyethylene matrix results in a certain decrease of the yield strength, as shown in Figure 3. On the contrary an increase of the Young's modulus (Fig. 4) for higher talc content in the LDPE matrix was noted. In Figure 5 the variation, both of elongation at break and elongation at yield point, of the polyethylene, as a function of the talc content, is presented. As expected, the talc modification of the polyethylene matrix leads to brittle behaviour of the samples, effect specially visible for a higher talc content. The tensile elongation of samples with 1 mm thickness is significantly lower, in all cases, comparing with that of thickness of 3 mm. The changes of the mechanical properties, of talc modified LDPE, may depend on the interaction between the matrix and the dispersed phase but also may result directly from the processing induced structure modification. Especially, the load bearing effect of talc particles with a plate- like structure and an interfacial bonding existing between the matrix and filler should be considered.
Czasopismo
Rocznik
Strony
126--130
Opis fizyczny
Bibliogr. 17 poz., tab., wykr.
Twórcy
autor
  • Akademia Techniczno-Rolnicza, Wydział Technologii i Inżynierii Chemicznej, ul. Seminaryjna 3, 85-326 Bydgoszcz
  • Akademia Techniczno-Rolnicza, Wydział Technologii i Inżynierii Chemicznej, ul. Seminaryjna 3, 85-326 Bydgoszcz
Bibliografia
  • [1] Hornsby P.R., Mineral Fillers in Thermoplastics: Rheology, Compounding and Processing of Filled Thermpolastics, Advances in Polymer Science 1999, 139, 155-217.
  • [2] Rothon R.N., Mineral Fillers in Thermoplastics: Filler Manufacture and Characterisation, Advances in Polymer Science 1999, 139, 67-107.
  • [3] Szlezyngier W., Tworzywa sztuczne, Rzeszów 1999, T. 3.
  • [4] Saechtling, Tworzywa sztuczne, WNT, Warszawa 2000.
  • [5] Norton D.R., Keller A., Polymer 1996, 26, 704.
  • [6] Alonso M., Velasco J.I., J.S. de Saja, Eur. Polym. J. 1997, 33, 3, 255-262
  • [7] Piórkowska R., Zieliński W., Polimery 1997, 42, 5, 331- 336.
  • [8] Sole B.M., Ball A., Trybology International 1996, 29, 6, 457-465.
  • [9] Chang Ho Suh, With J.L., J. Non-Newtonian Fluid Mech. 1996, 62, 175-206.
  • [10] Sterzyński T., Polimery 2000, 45, 11-12, 786-791.
  • [11] Sterzyński T., Calo P., Lambla M., Thomas M., Polymer Engineering and Science 1997, 37, 12, 1917-1927.
  • [12] Materiały reklamowe firmy MZRiP Płock.
  • [13] Materiały reklamowe firmy Luzenac.
  • [14] DIN 53 464.
  • [15] DIN 16 901 (ISO 2577).
  • [16] PN-68/C-89034.
  • [17] Tjong S.C, R.K.Y. Li, Journal of Vinyl & Additive Technology 1997, 3, 89-95.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAR2-0006-0064
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.