PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Otrzymywanie i termiczna modyfikacja warstw kompozytowych Ni+Al

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Production and heat treatment Ni+Al composite layers
Języki publikacji
PL
Abstrakty
PL
Badano wpływ zawartości proszku glinu w kąpieli galwanicznej na skład chemiczny warstw kompozytowych Ni+Al, otrzymywanych elektrolitycznie w warunkach galwanostatycznych (1170 C x cm-2) na podłożu stalowym. Kąpiel galwaniczna zawierała proszek glinu w ilości: 20, 40, 60, 80, 100 g/dm3. Stwierdzono, że wraz ze wzrostem zawartości Al w kąpieli jego zawartość w warstwie osiąga 16%, po czym maleje do około 11%. Dla optymalnego składu kąpieli galwanicznej zapewniającego otrzymanie warstw o zawartości 16% Al określono wpływ wartości gęstości prądowej na ilość wbudowywanego Al do warstwy. Następnie warstwy te były wygrzewane w piecu elektrycznym, do którego doprowadzany był argon. Badania składu fazowego przeprowadzono za pomocą rentgenowskiej analizy fazowej, a analizę składu chemicznego metodą atomowej absorpcji. Przeprowadzone badania wykazały możliwość otrzymywania warstw kompozytowych na osnowie Ni z zabudowanymi ziarnami Al. Warstwy poddane modyfikacji termicznej w temperaturze 873 K, obok obecności krystalitów niklu i glinu, wykazują obecność związków międzymetalicznych Ni2Al3 i Ni3Al4.
EN
Electrolytic nickel layers are typified by good corrosion resistance and electrochemical activity in the processes of cathodic hydrogen evolution and anodic oxygen evolution. In order to improve of utilizable properties of the nickel layers, the coatings were co-deposited from baths containing metal oxides (Al2O3, Al3O4, NiO). Incorporating into a metallic matrix of composite component as metallic powder and its embedding into the matrix structure follows to obtain a new kind of composite material. Therefore, the present study was undertaken in order to obtain the electrolytic composite layers containing embedded aluminum grains into a nickel matrix. The structure and properties of Ni+AI alloys were determined using different methods. Composite Ni+AI layers were prepared by simultaneous electrodeposition of nickel and aluminum on a steel substrate in which 20, 40, 60, 80, 100 g/dm3 of Al powder were suspended. The electrodeposition was carried out under galvanostatic conditions at a temperature of 293 K and the current density of jD = 300 mA/cm2 for 1 h. The phase composition of the layers was investigated by the X-ray diffraction method. The surface morphology of the coatings was examined by means of a stereoscopic microscope Nicon. The obtained Ni+AI layers are of mat, rough metallic surface. There are a visible Al grains on the layer surface (Fig. 1). X-ray analysis of Ni+AI layers revealed their two phase composition (Fig. 2a). It was found that the phase structure of obtained layers depends on phosphorous content in the layer only. Atomic absorption spectroscope was used for chemical characterization of the layers. The influence of aluminum powder content in an electroplating bath on the chemical composition of Ni+AI layers was examined. Chemical analysis of the Ni+AI layers confirms the co-deposition of Ni and Al. It was ascertained that the increase aluminum powder amount in the bath causes the rise in Al content embedded into the composite layers. In the layers of Ni+Al-a linear increase of Al content in the layer from 15% to about 20% was observed (Tab. 1). It was assumed that mechanism of Al embedding into the layer based on the adsorption phenomena and migration of the charged suspension-micelles towards the cathode. The chemical composition of the layers depends also on current density deposition (Tab. 2). It was showed that from the bath containing 40 g Al/dm3 at the current density equal 320 mA/cm2 composite layer containing about 16% Al was obtained. In this case the average mass increment has also maximal value. The result of that process is possibility to obtain considerable thickness and good adhesivity of those composite layers. The thickness of composite layers increase linearly with the increasing of Al content in the bath. It is equal 120 and 150 micrometers for Ni+AI. The heat treatment of the layer at 873 K was done. It was ascertained that after the thermal treatment the obtained layers are of mat, rough metallic surface (Fig. 3). Depending on time of heat treatment the different surface morphology are obtained. This indicates on chemical reaction in solid state of the layer. Markedly different X-ray spectra were obtained for the electrocoatings heated in the argon atmosphere. The main peaks corresponding to the Ni and Al coexist with the new ones corresponding to new phases: Ni2jAl3, Ni3Al4 (Fig. 2b). Such phases can take part in hydrogen electroevolution.
Czasopismo
Rocznik
Strony
52--57
Opis fizyczny
Bibliogr. 23 poz.,tab., wykr., rys.
Twórcy
  • Uniwersytet Śląski, ul. Bankowa 12, 40-007 Katowice
autor
  • Uniwersytet Śląski, ul. Bankowa 12, 40-007 Katowice
Bibliografia
  • [1] Niedbała J., Budniok A., Gierlotka D., Surówka J., Ni-PNiO electrolityc layers as anode materials, Thin Solid Films 1995, 226, 113.
  • [2] Łosiewicz B., Stępień A., Gierlotka D., Budniok A., Composite layers in an Ni-P system containing TiO2 and PTFE, Thin Solid Films 1999, 349, 43-50.
  • [3] Gierlotka D., Rówiński E., Budniok A., Łągiewka E., J. Appl. Electrochem 1997, 27, 12, 1324.
  • [4] Serek A., Budniok A., Dyspersja wolframu w elektrolitycznych warstwach niklowych, Archiwum Nauki o Materiałach 1999, 20, 4, 259-268.
  • [5] Budniok A., Łosiewicz B., Popczyk M., Serek A., Production and structure of new electrode materials based on Ni-P amorphous matrix, Proccedings of 197-th Meeting of The Electrochemical Society, Toronto September 2000, Abstract No. 1209.
  • [6] Budniok A., New electrode materials containing metallic powder or metal oxide embedded in the nickel matrix, Proc. of VII International Symposium FORUM, Warsaw 2001 AE-O1 186.
  • [7] Serek A., Budniok A., Characteristic of nickel composite layers containing titanium powder, Proc. of VII International Symposium FORUM, Warsaw 2001 AE-P-13.
  • [8] Budniok A., Serek A., New electrode materials containing metallic powder in the amorphous matrix of Ni-P, Abstract No. A237, 1st International Materials Symposium Materiais 2001, Coimbra University, Mechanical Engineering Department, Coimbra, Portugal, April 9-11, 2001.
  • [9] Serek A., Budniok A., Production of electrolytic nickel and nickel-phosphorous composite layers containing titanium, Current Physics (wysłane do druku).
  • [10] Szczygieł B., Studium nad otrzymywaniem i właściwościami elektrolitycznych warstw dyspersyjnych niklu z węglikiem krzemu, Prace Naukowe Technologii Nieorganicznej i Nawozów Mineralnych Politechniki Wrocławskiej, Seria Monografie 47, 15, Wrocław 1998.
  • [11] Lasia A., Linlin Chen, Ni-Al Powder Electrocatalyst for hydrogen evolution, Effect of heat-treatment on morphology, composition, and kinetics, Département de Chimie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada, J. Elektrochem. Soc. 1993, 140, 9.
  • [12] Kopit Y, The ability of systems based on Ni, Al and Ti to be synthesized by self-propagating high-temperature synthesis (SHS), Intermetallics 2001, 9, 5, 387-393.
  • [13] Hibino A., Matsuoka S., Kiuchi M., Synthesis and sintering of Ni sub 3 Al intermetallic compound by combustion synthesis process, Journal of Materials Processing Technology 2001, 112, 1, 127-135.
  • [14] Zhang H.F., Wang A.M., Li H., Song Q.H., Ding B.Z., Hu Z.Q., Microstructure and catalytic properties of rapidly quenched Ni-Al-Cr-Fe alloy, Materials Letters 2001, 48, 6, 347-350.
  • [15] Zell C.A., Freyland W., In situ STM and STS study of Nix Al1-x alloy formation on Au(111) by electrodeposition from a molten salt electrode, Chemical Physics Letters 2001, 337, 293-298.
  • [16] Ding J.J., Rogl P., Schmidt H., Phase relations in the Al-rich corner of the Ti-Ni-Al system, Journal of Alloys and Compounds 2001, 317-318, 379-384.
  • [17] Bach F.W., Babiak Z., Duda T., Rothardt T., Tegeder G., Impact of self propagating high temperature synthesis of spraying materials on coatings based on aluminium and metal-oxides, Thermal Spray 2001: New Surfaces for a New Millenium, Proceedings of the International Thermal Spray Conference 2001, 497-502.
  • [18] Tan Y., Shinoda T., Mishima Y., Suzuki T., Stoichiometry splitting of beta phase in Ni-Al-Mn, Ni-Al-Co and Ni-AlFe ternary systems, Materials Transactions 2001, 42, 3, 464-470.
  • [19] Ohmi T., Yanoma J., Kudoh M., Melting behavior of reaction products during thermite-type combustion synthesis of Ni-Al intermetallic compounds, Journal of the Japan Institute of Metals 2001, 65, 3, 167-170.
  • [20] De Fraga Malfatti C., Klein C.W., Manhabosco T.M., Ferreira J.Z., Corrosion resistance of electroless nickel with particles ncorporated, Anais do 55 Congresso Anual da Associacao Brasileira e Materiais 2000, 234-242.
  • [21] Mukasyan A., Pelekh A., Varma A., Rogachev A., Jenkins A., Effects of gravity on combustion synthesis in heterogeneous gasless systems, AIAA Journal 1997, 35, 12, 1821-1828.
  • [22] Gruszka A., Budniok A., Production and structure of electrocoatings Ni-P-TiO2-Al, Advanced Performance Materials 1999, 6, 2, 141.
  • [23] Lasia A., Applications of the Electrochemical Impedance Spectroscopy to Hydrogen Adsorption, Evolution and Absorption into Metals, Département de Chimie, Université de Sherbrooke, Sherbrooke, Québec 2001.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAR2-0006-0049
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.