Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Study on polysiloxane resins as matrix precursors for ceramic composites
Języki publikacji
Abstrakty
Przeprowadzono badania dotyczące możliwości wykorzystania żywic siloksanowych (zawierających w strukturze krzem) jako substratów do wytwarzania kompozytów z włóknami węglowymi. Przeprowadzono badania strat masy podczas obróbki cieplej żywic oraz kompozytów o osnowach otrzymanych na bazie tych żywic. Kompozyty otrzymywano metodą ciekłej impregnacji. W badaniach wykorzystano dwa rodzaje żywic poli[mctylo(fenylosiloksanowych)j o oznaczeniach handlowych L 901 i L 150X produkcji czeskiej (Lucebni zavody, Kolin, Republika Czeska). Otrzymane kompozyty poddano badaniom odporności na utlenianie. Kompozyty o osnowie otrzymanej na bazie żywicy L 901 mają mniejsze straty masy podczas obróbki cieplej w porównaniu do kompozytów o osnowie otrzymanej na bazie żywicy L 150X. Podobnie jest z odpornością na utlenianie. Największą odpornością na utlenianie charakteryzują się następujące kompozyty: włókna węglowe T 300 z preparacją-żywica zwęglane w 1500°C oraz włókna SiC-żywica zwęglane w 900°C.
One of the most advanced and promising engineering materials is the carbon fibres-reinforced carbon matrix composite, often termed as carbon-carbon composite. Their desirable properties including high-tensile modulus and tensile strength that are retained to temperatures in excess of 2000°C, resistance to creep, and relatively large fracture toughness values. Furthermore, carbon-carbon composites have low coefficients of thermal expansion and relatively high thermal conductivities; these characteristics, coupled with high strengths, give rise to a relatively low susceptibility to thermal shock. Their major drawback is a propensity to high-temperature oxidation. This occurs at temperatures above 500°C. Much effort is done in order to protect carbon-carbon composite against air-oxidation and to enable their use for high temperature application. Several methods have been developed to improve oxidation resistance. Ceramic matrix composites reinforced with carbon fibres are potential candidates for applications requiring high strength and modulus at elevated temperatures. Subject of this work is usability of [methyl(phenyl)siioxane] resins as matrix fibre-reinforced composites. The used resins were compared from point of view of mass losses after heat treatment and of oxidation resistance in air at 600°C. The investigations were realized in the following stages: Investigation of two types of [methyl(phenyl)siloxane] resins (designations: L 150X and L 901) as matrix precursors. Preparation of composite samples with various types of fibres. Investigation of composites. In this study [methyl(phenyl)siloxane]-based resins, type L 150X and L 901, produced by Lufebni zavody, Kolin (Czech Republic) and various types of fibres (carbon fibres T 300 (Torayca) without sizing, carbon fibres T 300 (Torayca) with sizing, SiC fibres NICALON) were used. Resins were used as the substrates for receiving matrices of composites. The resins varied in chemical structure, physical properties and type of solvent. The unidirectional composite samples (ID) were manufactured by wet-winding (prepreg) technique. Method of preparation is shown in Figure 1. The oxidation resistance for all samples was determined by mass losses measurement after heating in air atmosphere at 600°C for 2 hours. Mass losses after heat treatment for resin L 901 were 15,7% (Fig. 2). This result indicates that composite with L901 resin as a matrix precursor should have lower porosity in comparison to composite with matrix received by heat treatment of L 150X resin (50.2%). Hence, the L 901 resin heat treated at 900°C has lower mass losses after oxidation then L 150X resin (after heat treatment at the same conditions) (Fig. 2). Carbon fibres T 300 surface treated (with sizing)/resin composite after heat treatment at 900°C (Fig. 4) has distinctly lower oxidation resistance in comparison to the same composite after heat treatment at 1500°C (Fig. 5). It can be explained by SiC forming in the matrix after additional treatment at 1500°C, which inhibits the oxidation process. As it indicates from Figures 3 and 4 carbon fibres T 300 reinforced with resin matrix and subject to heat treatment at 900°C have relative low oxidation resistance. SiC fibres/resin composite (Fig. 6) has comparable oxidation resistance to the carbon fibres with sizing/resin composite after heat treatment at 1500°C (Fig. 5). Composites with L 901 resin-based matrix have lower mass losses after heat treatment in comparison to composites with L 150X resin-based matrix. Such a low value of mass losses can be useful for receiving the composites, which should have higher density, lower porosity and probable should have better mechanical properties. The highest oxidation resistance have carbon fibres T 300 with surface sizing/resin composite after heat treatment at 1500°C and SiC fibres/resin composite heat treated at 900°C.
Czasopismo
Rocznik
Tom
Strony
259--262
Opis fizyczny
Bibliogr. 8 poz., wykr., rys.
Twórcy
autor
- Akademia Górniczo-Hutnicza, Wydział Inżynierii Materiałowej i Ceramiki, al. Mickiewicza 30, 30-059 Kraków
autor
- Akademia Górniczo-Hutnicza, Wydział Inżynierii Materiałowej i Ceramiki, al. Mickiewicza 30, 30-059 Kraków
autor
- Tohoku University, Departament of Materials Science and Engineering, Japan pages 259-262
Bibliografia
- [1] Yasuda E., Kimura S., Trans. JSCM 1980, 6, 1, 14.
- [2] Fischbach D.B., Utegrove D.R., Proc. 3th Biennial Conf. on Carbon 1977.
- [3] Sprawozdanie z pracy badawczej pt. Badania nad modyfikacją kompozytów węgiel - węgiel do zastosowań wysokotemperaturowych, KBN, 1998.
- [4] Stinton D., Caputo A., Lowden R., Synthesis of fiberreinforced SiC composites by Chemical Vapor Infiltration, Am. Ceram. Soc. Bull. 1986, 65, 347-350.
- [5] Lamicq P., Bernhart G., Dauchier M., Mace J., SiC/SiC composite ceramics, Am. Ceram. Soc. Bull. 1986, 65, 34-350.
- [6] Wajler C., Michałowski J., Błażewicz S., Oxidation resistance of C/C composite coated with silicon-based compounds, International Symposium of Carbon, Science and Technology for New Carbon, Tokyo 1998.
- [7] Brus J., Koláŕ F., Machovič V., Svítilová J., Structure of silicon oxycarbide glasses derived from poly(methylsiloxane) and poly[methyl(phenyl)siloxane] precursors, Journal of Non-Crystalline Solids 2001, 289, 62-67.
- [8] Glogar P., Hvizdoš P., Koláŕ F., Rudnayová E., Lifetime study of unidirectional Nicalon-polysiloxane composites at elevated temperatures, Proc. Int. Symp. Brittle Matrix Composites 6, Warsaw 2000, 557-565.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAR2-0006-0042
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.