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Summary 

In recent years one can observe significant growth of the interest in the structural health 
monitoring (SHM) systems development and applications. However many authors focuses on the 
damage detection and all the activities related with diagnosis of failure. Meanwhile, classical, full 
SHM system should have in addition to a diagnostic module also module for excitation 
monitoring. Excitation can be measured, but easier and cheaper is to identify it by measuring the 
response of the object. Often it is the only practical possibility to monitor the excitation. The 
authors took this often overlooked problem of SHM systems, comparing the most commonly used 
algorithms for the identification of excitation acting in the time domain in terms of their usefulness 
in SHM systems. Showing a description of each of the algorithms and simulation results. The 
following features were compared: accuracy of the excitation reconstruction, simplicity of the 
algorithm, including the amount and type of data needed to build the model. 

 
Keywords: force identification, inverse problems. 

 
PORÓWNANIE WYBRANYCH ALGORYTMÓW IDENTYFIKACJI WYMUSZE  

DZIA AJ CYCH W DZIEDZINIE CZASU 
 

Streszczenie 
W ostatnich latach obserwuje si  znaczny wzrost zainteresowania budow  i zastosowaniami 

uk adów monitorowania stanu obiektów (ang. Structural Health Monitoring - SHM). Jednak e 
wi kszo  autorów skupia si  na wykrywaniu uszkodze  i innymi czynno ciami zwi zanymi z 
diagnostyk . Tymczasem, klasyczny, pe ny uk ad monitoringu powinien posiada  poza modu em 
diagnostycznym równie  modu  odpowiedzialny za rejestracj  wymusze . Wymuszenia te mog  
by  mierzone, lecz taniej i atwiej niejednokrotnie jest identyfikowa  je na podstawie pomiaru 
odpowiedzi. Cz sto jest to jedyna praktyczna mo liwo  monitorowania wymusze . Autorzy 
podj li ten cz sto pomijany problem, dokonuj c porównania najpopularniejszych algorytmów 
identyfikacji wymusze  dzia aj cych w dziedzinie czasu pod k tem ich przydatno ci w uk adach 
SHM. Pokazano zarówno opis metod jak i wyniki ich symulacyjnej weryfikacji. Porównywano 
nast puj ce cechy algorytmów: dok adno  odtwarzania wymuszenia, prostota algorytmu z 
uwzgl dnieniem implementacji, czasu dzia ania i rodzaju danych koniecznych do przygotowania 
algorytmu.  
 

S owa kluczowe: identyfikacja wymusze , zagadnienie odwrotne. 
 
 

1. INTRODUCTION 

Structural health monitoring (SHM) is a 
relatively new appearance in science. The first 
references to this subject appeared in world literature 
in the 1980s. SHM is a natural development of 
technical diagnostics and is also very closely 
connected with non-destructive testing. According 
its definition SHM is: the interdisciplinary field of 
science leading to the provision of, at any moment 
of the working life of the object, a diagnosis of the 
material integrity of successive elements, as well as 
the state of all elements together creating the tested 
object as a whole. This state must stay in the range 
defined during design of the object, although it may 

change as a result of normal usage, environmental 
effects or unexpected events. Thanks to the 
continuous  monitoring, which allows an analysis of 
the complete history of the structural health, as well 
as the monitoring of operating conditions (loads), 
the SHM system should also provide a prognosis 
(damage development, remaining work time etc.) 
[1]. Many authors often forgets about the second 
part of the definition, which says about the 
excitation monitoring, and it is equally important as 
damage detection in the SHM systems. In Fig. 1. the 
classic, full SHM system block diagram is presented.  
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Fig. 1. Block diagram of SHM system 

 
The presented block diagram depictures that 

each SHM system should be composed of three 
equally important modules:  

a diagnostics module, 
a module monitoring operating conditions, 
a database containing material models and 
damage accumulation models.  

The first of these performs the basic task of 
SHM systems, in other words, it tests the integrity of 
particular sub-system elements. This allows 
(depending on the level that a given system 
represents – see the previous section) the detection, 
localisation and identification of damage developing 
in the object. When damage appears, the module 
automatically informs the operators about it, 
simultaneously sending information to higher 
management levels. The operators, helped by the 
diagnosis provided by the sub-system management 
level and system management level, take a decision 
regarding further actions. Possible actions include 
changing the work system parameters, turning off 
sub-systems or, as a last resort, turning off the whole 
system. 

The second of the modules helps by monitoring 
exploitation conditions. Environmental conditions 
are measured, including temperature, humidity, 
pressure (depending on requirements), as well as the 
main forces present in the system. These are 
excitations or in the form of generalised forces or 
kinematic excitations, and can be measured directly 
or indirectly, or identified on the basis of response 
measurements. In cases where the recorded forces 
exceed the average due to inappropriate usage, or 
unfavourable external appearances, e.g. storms, 
hurricanes and earthquakes, this sub-system may 
send a warning to the operators, and administration 
of the object, which on this basis may or, in fact, 
should, conduct a more detailed analysis. This 
analysis aims at checking the influence of the 
exceeded force values on the object. 

It is worth noting that the two modules discussed 
above use separate sensor networks. It sometimes 
occurs that both a change in force and structural 
changes occurring in the object as a result of damage 
cause a change in the system response. The 
independence of both measurement networks allows 
the differentiation of both sources of anomalies. 
Before placement of the sensors, an appropriate 
analysis is performed with the aim of finding the 

best sensor localisation for both groups of sensors. 
In the case of sensor networks for force 
identification transfer path analysis (TPA) is very 
helpful, while sensitivity analysis can be applied 
during the placement of diagnostic sensors. 

The third module of execution level contains a 
database of material models suitable for monitoring 
sub-systems as well as damage accumulation 
models. Together with information from the two 
previously described modules, a prognosis 
concerning damage development and the remaining 
work time of sub-systems is generated. It is worth 
adding that this module may be located on execution 
levels or on one of the management levels 
depending on where greater computing power is 
accessible. 

Last two of the above modules required the 
excitation monitoring. Unfortunately measurement 
of operational excitations is sometimes very difficult 
or even impossible. That is why the excitations are 
often monitored on the basis of structure response 
measurement. The actual excitation value is 
reconstructed with use of the inverse problem 
solution.   

2. CLASSIFICATION OF LOAD 

IDENTIFICATION ALGORITHMS 

An overview of the literature concerning the 
problems of force identification on the basis of 
signal response measurements allows the 
formulation of a few divisions of these methods.  

The first of these is a division due to the number 
of forces present in systems. The next factor 
differentiating methods of force identification is 
their ability to identify whole force vectors 
(direction, sense and value) or only the values of 
forces present at known locations and directions of 
its activities. The most-well-known division of force 
identification methods is based on differences in the 
type of estimation algorithms [2]. According to this 
division, one can distinguish: 
- methods based on deterministic dependencies: 

- methods operating in the time domain: 
- iterative methods, 
- single-step methods, 

- methods operating in the frequency domain: 
- methods based on frequency 
characteristics, 
- methods based on the mutual energy 
theorem, 
- methods based on modal filtration, 

- methods operating in the amplitude domain. 
- methods based on statistical dependencies. 
- methods based on intelligent algorithms: 

- methods using neural networks, 
- methods using genetic algorithms, 
- methods based on fuzzy reasoning. 

A separate problem connected with the 
identification of forces is the separation of many 
sources present in systems [3, 4], for example, for 
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the needs of transfer path analysis.  
Since for the prognosis of remaining life of the 

system the time history of the excitations and loads 
are necessary, for the purposes of application in 
SHM the algorithms which operate in time domain 
were selected to the comparison.   
 
3. COMPARISON DETAILS AND 

ASSUMPTIONS

As it was stated in the previous section the time 
domain algorithms were selected for further 
consideration. Among these methods the four most 
promising were chosen: 
- quality function minimization method (QFM), 
- method based on state and input observer (SO), 
- method based on regressive parametric model 

inversion (PMI), 
- method based on artificial neural network 

(ANN). 
To test the method in the first step the simulation 

data were prepared. To do so the finite element 
model of the steel - aluminum frame was created. 
Next the model was imported to the Simulia 
Abaqus/CAE 6.10-1 software in order to simulate 
the dynamic responses in time domain. In Figure 2 
the model of the object is presented.  
 

 
 

Fig. 2. Model of the simulated system 
 

The excitation was placed in point RP1. The 
responses in form of vibration accelerations were 
virtually measured in points RP2 – RP5. Two 
simulations with two types of excitation signals were 
carried out: 
- harmonic excitation with amplitude 50 N and 

frequency 5 Hz, 
- random excitation with mean value 0.5, normal 

distribution and amplitude 1 N. 
In the consecutive steps the data were used for 

verification of selected methods. Next each of the 
methods was classified and evaluated according to 
the following criteria: 

- the accuracy of the signal reconstruction - 
which were taken into account two factors: 
Pearson's correlation coefficient and 
percentage fit of the signals expressed by 
the formula: 

%100
1

YYNorm

YYNorm
Fit  (1) 

where: YY , - normalized vectors of 

measured and estimated force 
- the level of complexity in 

software/hardware implementation and 
computational, 

- time of calculations, 
- type and number of required training data. 

For every of the above criteria the ranking of 
methods was done – the algorithms were ordered 
from the worst to the best one. 

4. FORCE IDENTIFICATION WITH USE OF 

QUALITY FUNCTION MINIMIZATION 

This method belongs to the most often used 
iterative methods [5, 6, 7, 8]. It may be used for 
reconstructing the force time history on the basis of 
knowledge of responses. In particular, it is suitable 
for the identification of impulse force. It is based on 
the minimization of the objective function as a 
measure of the fit between the measured response 
signal and the calculated one.  

Using a reduced vector of state variables q we 
define the objective function as a difference between 
the measured response y and the calculated response 
q.  
 

N

j

T

jj

T

jjjjj EffyqDyqfcJ
1

,   (2) 

 
where: c – vector of initial conditions of motion, 

fj, qj, yj – force, calculated and measured 
state variables vectors at the time j, 

D, E – weight matrices. 
 

The introduction of the element fjEfj
T to the 

objective function (1) is necessary due to the quality 
of the obtained force. This operation is the so-called 
regularisation. In order to obtain forces present in 
the system, J should now be minimised: 
 

fJmin   (3) 
 

With the objective function defined in this way, 
it is necessary to select the methods for its 
minimization. Here, methods based on dynamic 
programming [5], [6] or genetic algorithms [7] are 
applied. The advantage of these methods is their 
ability to be applied in non-linear systems, a 
drawback is the large calculation power and the long 
time required for calculations.  

In the performed simulation the authors used the 
state space model identified for the system presented 
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in Fig. 2. As the optimization algorithm the dynamic 
programming was applied. As it was stated in 
Section 3 the method was tested with use of two 
type of signals – harmonic and random. In Figure 3 
the results of comparison between applied and 
estimated harmonic excitation signal are presented. 
In Figure 4, appropriate comparison for random 
signal is shown. 
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Fig. 3. Results of comparison between applied and 

estimated harmonic excitation signal 
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Fig. 4. Results of comparison between applied and 

estimated random excitation signal 
 

The quantitative results of excitation signal 
estimation are gathered in Table 1.  
 

Table. 1. Results of excitation estimation 
Correlation 

coeff. 
Signal fit Calculation 

time [s] 
harm. noise harm. noise harm. noise 
0.999 0.95 99% 92% 165 640 

 
As it can be observed from the above results the 

method is very accurate for both types of signals. 
Also it did not required many training data – only 
one set of time histories for the state space model 
identification. However its implementation was 
quite complex and time consuming and the time of 
calculation was very long. The latter is the biggest 
drawback of the tested algorithm.  

 

5. FORCE IDENTIFICATION WITH USE OF 

STATE OBSERVER METHOD 

The next method of force identification, which 
was imported from automatics, uses the state 
observer with unknown input signal  [9]. This type 
of observer, on the basis of the system responses 
signals, identifies its states as well as input signals. 
The method of force identification using such an 
observer is resistant to measurement noise and may 
operate in real time. The design of the observer for 
non-linear objects begins with writing its 
mathematical model in the form of a state of 
equations: 
 

tDutCxty

yuxftButAxtx ,,
  (3)

where: x(t) – vector of object state 

u(t) – vector of desired force  

y(t) – vector of measured outputs 

f((x,u),y) – element introducing non-

linearity to the object.  

 

This can be divided into two parts – known and 

unknown: 

 

yuxWfyuxfyuxf UL ,,,,,,       (4) 

 

where: fL((x,u),y) – known non-linear part 

fU((x,u),y) – unknown non-linear  part 

 

The matrices A, B, C, D, and W are constant and 

have real values. The task consists of designing an 

observer, which, with the measured system 

responses, estimates both the state of the object and 

the forces present at input. Details of the design 

procedure for this type of observer can be found in 

[10] and require two assumptions to be met: 

Assumption 1: 

 fL((x,u),y) must meet the inequality below with the 

Lipschitz constant:

yyfyf LL ,ˆ,ˆ,              (5) 

where: 
tu

tx
t   

             - Lipschitz constant – positive real scalar 

 

Assumption 2: 

The matrix [D CW] has a full column rank. A 

necessary condition for meeting this assumption is 

for the number of system outputs to be greater than 

or equal to the sum of the number of inputs and the 

size of the non-linear part, which does not meet the 

Lipschitz condition. 

In the tests the authors used the same state space 

model as in Subsection 4. The state observer 

implementation was performed with use of the 

Linear Matrix Inequality Toolbox from the Matlab 
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package. In Figure 5 the results of comparison 
between applied and estimated harmonic signal are 
presented. In Figure 6, the same comparison for 
random signal is shown. 
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Fig. 5. Results of comparison between applied and 
estimated harmonic excitation signal 
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Fig. 6. Results of comparison between applied and 
estimated random excitation signal 

 
The values of comparison indexes are presented 

in Table 2.  
 

Table. 2. Results of excitation estimation 
Correlation 

coeff. 
Signal fit Calculation 

time [s] 
harm. noise harm. noise harm. noise 
0.998 0.713 93% 77% 0.21 0.14 

 
As it can be seen from the results the method is 

also very accurate. According to the training data its 
requirements are the same as previously presented  
QMF method – only one set of time histories. It also 
worked very fast. However its implementation was 
very complex and required such a sophisticated tools 
as LMI toolbox.  

6. FORCE IDENTIFICATION WITH USE OF 

PARAMETRIC MODELS INVERSION 

The use of regressive parametric models for the 
identification of input signals can be seen in 
automatics. Adaptation of this method for 

mechanical systems and force identification can be 
found in the works [11] and [12]. Its basic stages 
are: selection of the structure and identification of 
the regressive parametric model, then inversion of 
the model and input to the inverse model of the 
response signal, most often in vibration acceleration 
form, with the aim of calculating the forces causing 
the response. The basic problem for solutions is 
therefore inverting  regressive models. 

In order to generate responses for an inverse 
linear dynamic model, it is necessary for it to be 
proper or strictly proper [13]. A proper object is 
characterised by having a transmittance with a 
numerator order lower than the denominator order 
nB < nA, in the strictly proper object, however, the 
numerator order is equal to the denominator order 
nB = nA. When the numerator order is higher than 
the denominator order nB > nA, the object is 
physically unrealisable with regard to the required 
ideal differentiation. Besides this, the object should 
be linear, stationary and minimum-phase. 

Physically realisable inversion for the object 
described by the continuous model is presented as a 
combination of the transmittance of the object with 
its inverse model with an identical structure 
H(s) Hinv(s) = 1. Ideal inversion requires the equality 
of the inputs u0(s) and u(s) introducing the standard 
model Hw(s) which allows the inverse model to be 
defined according to the dependency: 
 

)(
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nBnA

w

nB

nB

nA

nAw
inv

sTsbsbb

sasaa
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su

sH

sH
sH  

 (6) 
 
where: nA, nB – polynomials order,  

u(s), y0(s) – estimated input and reference 
output, 

Tw – time constant,  
 

The scheme of procedures for inverting the 
model of the object is presented in Figure 7. 
 

 
 

Fig. 7. Scheme of inverting a regressive 
parametric model of the object 

 
In Figure 7 e(s) designates the error between the 

reference force u0(s) multiplied by Hw(s), and the 
estimated force u(s), Hinv(s) is the transmittance of 
the inverse model of the object.  

An excessively large difference between the 
numerator order nB and the denominator order nA 
leads to greater inaccuracy of inversion. For large 
differences in the orders, the accuracy of inversion 
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falls for increasing frequencies. This results from the 
possibilities of performing ideal integration 
(minimal value of Tw). A discrete inverse model is 
designated as follows: 
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 (7) 
where: c – constant setting the accuracy of 
inversion. 
 
for c = 0 we gain: 
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In the case of discrete models, in order to 

maintain the physical realization of the system, an 
additional delay z-1 exciting causality of the impulse 
responses of the object is introduced. In other cases, 
the object would predict the future and the response 
would form before the force appeared. 

In the conducted simulations the authors first 
identified the regressive parametric model with use 
of Identification Toolbox. Many different structures 
of models with different orders of polynomials were 
tested. In the figure 8 and 9 the harmonic and 
random signals are compared.  
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Fig. 8. Results of comparison between applied and 

estimated harmonic excitation signal 
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Fig. 9. Results of comparison between applied and 
estimated random excitation signal 

 
The values of comparison results are placed in Table 
3. 

Table. 3. Results of excitation estimation 
Correlation 

coeff. 
Signal fit Calculation 

time [s] 
harm. noise harm. noise harm. noise 
0.98 0.37 83% 33% 0.35 0.37 

The best results for both harmonic and random 
data were achieved for the ARMAX model. The 
method worked very fast but the identification 
accuracy fro random signal was very poor. Also the 
amount of data required for the model preparation is 
bigger than in the two previous cases. 

7. FORCE IDENTIFICATION WITH USE OF 

ARTIFICIAL NEURAL NETWORK 

Artificial neural networks are constructed from a 
definite number of basic calculation units known as 
neurons. These neurons are connected with each 
other in a series-parallel way. Each of the neurons 
possesses its own activation function and weight 
value. A typical network has a structure of layers: 
the input layer with the number of neurons equal to 
the number of system inputs, one or a few hidden 
layers and an output layer. Each layer is built from 
one or more neurons. Particular types of neural 
networks differ in the architecture of neurons 
placement and the flow of information between 
them, activation functions, methods of learning, etc. 
and are widely discussed in the literature [14, 15]. 

The application of artificial neural networks for 
force identification is described, among others, in 
the works [16, 17, 18, 19]. Because a machine as a 
dynamic system may find itself in various phases of 
loading (run-up, work with full load, without load, 
run-down etc.), in order to accurately identify the 
exploitation forces, firstly the state in which the 
appliance is found should be recognized [31]. On the 
basis of the value of measured responses or process 
variables, using the decisive neural network, the load 
state of the machine is allocated to one of the 
groups. To do this, it is possible to use a "back-
propagation" type network [14, 15] with the same 
number of input neurons as measured parameters. 
This process may be realized by a few neural 
networks in more difficult cases. It should be 
remembered that one undefined state should be 
added to the assumed machine work states, which 
allows qualification errors to be avoided. After 
performing classification of the loads states of the 
appliance, neural networks identifying exploitation 
forces on the basis of measured responses or process 
variables are constructed. For each load state there is 
a separate network. Such an approach considerably 
increases the accuracy of the identifying algorithm.  

The universality of artificial neural networks 
combined with the classification of initial states 
allows the accurate identification of operational 
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forces, conducted in real time. The difficulty of 
using neural networks is based on the lack of an 
unequivocal recipe for the type and size of networks 
which should be applied for a given problem. 

To identify the forces acting on an object, it was 
decided to use a neural network with back-
propagation of error, the feed-forward type. Input 
vector to the network was a set of responses of the 
object to the excitation contained in the output 
vector. During the trials, there were problems in the 
identification by the same network the harmonic and 
stochastic signals, due to their different characters. 
Therefore, it was decided to use two networks, one 
for the identification of sinusoidal excitation and the 
other for noise excitations. The allocation of one of 
the above networks the simple algorithm decides, on 
the basis of the number of peaks in a signal Fourier 
transform. If the number of peaks is more than ten, 
the signal is fed to the network devoted to the noisy 
signals. Otherwise, second network is used. In the 
figures 10 and 11 the harmonic and random signals 
are compared.  
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Fig. 10. Results of comparison between applied and 

estimated harmonic excitation signal
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Fig. 11. Results of comparison between applied and 
estimated random excitation signal 

The quantitative results of excitation signal 
estimation are gathered in Table 4. 

Table. 4. Results of excitation estimation 
Correlation 

coeff. 
Signal fit Calculation 

time [s] 
harm. noise harm. noise harm. noise 
0.999 0.62 89% 57% 0.45 0.47 

Application of artificial neural network to the 
excitation identification for the considered case gave 
moderate results. It worked fast but the accuracy was 
worse than the one obtained in SO an QFM 
methods. Also the amount of training data was the 
biggest in this case. 

8. SUMMARY 

 
In the previous sections four time domain 

algorithms for excitation identification have been 
tested. They were verified on the same simulation 
data. In Table 5 the assessment of the methods 
efficiency is shown, according to the criteria 
presented in Section 3. 
 

Table. 5. Assessment of excitation estimation 
algorithms 

 SO ANN QFM PMI 
Estimation 
accuracy 

1 3 1 4 

Time of 
calculation 

1 1 4 1 

Training data 2 4 1 3 
Complexity of 
implementation 

4 2 3 1 

TOTAL 8 10 9 9 

 
The selected evaluation system showed that the 
method based on state observer seems to be the most 
versatile. If only the identification accuracy is 
considered the best choice would be the method 
based on quality function. When the model of the 
object is unknown and difficult for identification due 
to for example nonlinearities then ANN are the only 
case.  
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