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Summary  

Today, effective unmanned machining operations and automated manufacturing are 

unthinkable without tool condition monitoring (TCM). Undoubtedly, the implementation of an 

adaptable, reliable TCM and its successful employment in industry, emerge as major instigations 

over the recent years. In this work, a sensor-based approach was deployed for the in-process 

monitoring and detection of tool wear and breakage in drilling. In particular, four widely reported 

indirect methods for tool wear monitoring, i.e. vibration signals together with thermal signatures, 

spindle motor and feed motor current measurements were obtained during numerous drillings, 

under fixed conditions. The acquired raw data was, then, processed both statistically and in the 

frequency domain, in order to distinguish the meaningful information. The study of the latter is 

influential in identifying the trend of specific signals toward tool wear mechanism. The efficiency 

of this information as a tool wear and/or breakage index is the feature that determines the 

effectiveness and reliability of a potential indirect TCM approach based on a multisensor 

integration. The paper concludes with a discussion of both advantages and limitations of this 

effort, stressing the necessity to develop simple, fast condition monitoring methods which are, 

generally, less likely to fail. 

 

Key words: tool condition monitoring, vibration signals, thermal signatures, spindle motor current,  
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1. INTRODUCTION

 

Manufacturing community is always striving to 

reduce operating costs while trying to improve 

product quality and meeting or exceeding customer 

satisfaction [1]. Focusing on the former intent, 

production cost reduction is achieved nowadays by 

using higher cutting speeds and by reducing human 

resources. As a consequence, over the years, the 

manufacturing environment has undergone dramatic 

changes, moving from the stage of conventional 

machinery to fully automated machining systems. 

Towards this advance, the oldest and most common 

“fix it when it breaks” strategy is clearly being 

replaced by “intelligent” condition monitoring (CM) 

systems. These systems monitor directly or 

indirectly the machining conditions utilizing vision-

based techniques or sensor-based signals, in order to 

provide diagnostic/prognostic indices for hard and 

soft faults; soft faults develop progressively with 

time creating a gradual degradation of the tool, 

while, on the other hand, hard faults take place 

instantaneously causing an abrupt cutoff of the 

operation (Figure 1). In other words, soft faults lead 

to a predictable situation, an attribute that makes 

them appropriate for CM, while hard faults are 

generally unpredictable and ineligible for this area 

of research. Consequently, the former type of fault 

can be used for prediction, while the latter is easier 

for diagnosis [2]. 

 

 
 

Figure 1: Hard and soft faults, Courtesy of [2] 

 

Specific pivotal components of a machining 

system, such as the tool, are often related with either 

soft or hard faults in the form of tool wear and/or 

breakage. Wear is a loss of material at the cutting 
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lips of drill bit due to physical interaction between 

the cutting tool and workpiece material [3]. 

Abrasion, adhesion, diffusion and fatigue are the 

basic mechanisms that cause wear in cutting tools. 

Tool wear in drilling is a progressive procedure but 

it occurs at an accelerated rate once a drill becomes 

dull. During this procedure, the cutting forces 

increase, temperature of tool rises, drill point 

deformation and immediate loss of sharp edges 

occur. After a certain limit, tool wear can cause 

catastrophic and sudden failure of the tool without 

any warning that causes considerable damage to the 

workpiece and even to the machine tool. This 

scenario can be illustrated in Figure 2 by classifying 

the wear stages as initial wear, slight wear (regular 

stage of wear), moderate wear (micro breakage stage 

of wear), severe wear (fast wear stage) and worn-out 

(or tool breakage) in terms of tool life [4]. 

 

 
 

Figure 2: Tool wear evolution: (1) initial wear, (2) 

slight wear, (3) moderate wear, (4) severe wear and 

(5) worn-out 

 

In drilling, which is a widely used machining 

process and represents approximately 40% of all 

cutting operations performed in industry, the failure 

of a common twist drill occurs by one of two modes; 

fracture or chipping and excessive wear. 

Experiments performed by Thangaraj and Wright 

[5] indicated that, under normal cutting conditions, 

failure due to fracture was observed with small size 

drills (  3 mm diameter), while excessive wear was 

the dominant failure mode with large size drills (> 3 

mm diameter), within a typical drill diameter size 

range of 1 to 20 mm. 

Generally, tool wear influences the quality of the 

surface finish and the dimensions of the parts that 

are manufactured, whereas tool failure is a major 

cause of unplanned interruption in a machining 

environment. Particularly, for modern machine 

tools, 20% of the downtime is ascribed to tool 

failure, resulting in reduced productivity and 

economic losses [6]. Hence, the reason for acquiring 

the drill wear state information is to enhance the 

predictive capability to allow the machine operator 

to schedule tool change or regrind just in time to 

avoid underuse or overuse of tools, prevent 

shutdown of machines due to damage and minimize 

scrap or rework [1].  

Yet, both tool wear and tool breakage are still 

unsolved primary problems in metal cutting 

processes, though a considerable amount of research 

has been done in the literature [3]. Many researchers 

have looked for variable ways to detect tool wear 

and, consequently, prevent a tool breakage, but a 

highly general and reliable on-line tool wear 

measurement technique has to be developed. Due to 

the high complexity of drill wear and breakage 

mechanisms, both mathematical models and 

numerical methods generally fail to provide a 

precise description of the relevant dynamics of 

drilling. As a consequence, the “safe” way to 

implement a system able to predict and diagnose 

drill wear and breakage lies upon on-line tool 

condition monitoring (TCM).  

In principle, there are two possible TCM 

approaches, i.e. direct and indirect methods. Direct 

tool wear estimation systems are able to measure 

directly the tool wear via tool images, computer 

vision, etc. which means that these methods actually 

measure tool wear as such. Moreover, their 

application is simple and the reliability is high. 

However, the automated application of a direct tool 

wear estimation system is not feasible because the 

detection system should be able to detect the wear 

zone and measure it, requiring that either the tool be 

removed from the machine after a certain period of 

time or a measuring device be installed on the 

machine. Consequently, any of these practices 

would cause downtime and production loss, 

rendering direct methods either economically or 

technically inadequate. On the other hand, instead of 

wear, indirect monitoring methods measure 

something else, i.e. a parameter, which must be a 

function of wear [7]. Commonly used parameters in 

indirect methods are cutting forces, vibration, 

acoustic emission, current, power and temperature. 

The main advantage of indirect methods is that they 

are applied online. Unfortunately, these methods 

present limited reliability and design complexity due 

to the unpredictable impact of the wear process to 

the measured signal. Moreover, the sensor cost is 

generally high [2]. 

 

2. EXPERIMENTS 

 

2.1 Experimental background 

This experimental work deals with the use of 

four common indirect TCM methods in an attempt 

to evaluate their validity as in-process tool wear 

and/or breakage indices, during standard drilling 

processes. Specifically, vibration signals, thermal 

signatures, spindle motor and feed motor current 

measurements are obtained and, then, processed in 

order to extract the meaningful information from the 

raw data and assess the proclivity of the above 

parameters toward drilling tool wear. 

Vibration is a widely used parameter in indirect 

TCM. It is logical to expect vibration measurements 

to react to tool wear; if in a dynamic system such as 
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the machine tool the cutting forces increase, the 

dynamic response will also increase [8]. Vibration 

signatures are suggested as reliable, robust and 

applicable for TCM, in addition to the fact that 

vibration monitoring techniques present ease of 

implementation; no modifications to the machine 

tool or the workpiece are required. Furthermore, 

vibration signals can be acquired by fewer, easily 

replaceable and very cost-effective peripheral 

instruments in contrast to acoustic emissions (AE) 

for instance. Last but not least, such signals have the 

quick response time needed to indicate changes for 

on-line monitoring [9]. Unfortunately, vibration 

monitoring relates to several limitations. Besides 

their sensitivity to tool wear, vibrations are highly 

influenced by the workpiece material, cutting 

conditions, machine tool structure and machining 

noise that occurs under real industrial environments. 

In the reported literature, tool temperature [10, 

11], feed motor current and spindle motor current 

[12-24] are also widespread parameters for TCM 

and appear to be potential indices of drill wear. In 

the same manner as vibration, spindle motor and 

feed motor current can be related to the dynamics of 

drilling process, reflecting the amount of power used 

in the machining process. Although vibration and 

cutting force sensors are located close to monitored 

tool, offering hence more representative 

measurements, it is much easier to acquire the 

current of the spindle or the feed motor, to monitor 

the tool condition in a simple, but quite valid, way. 

In contrast, temperature-based TCM, involving 

infrared or fiber-optic pyrometers and infrared 

thermography imagers, is a major challenge due to 

numerous practical difficulties involved in cutting 

processes. 

2.2 Experimental set-up 

Figure 3 presents schematically the experimental 

setup of this work. As mentioned, vibration, spindle 

motor current and tool temperature signals were 

obtained during drilling operations conducted on 

Yang SMV-1000, a three-axis computer numerical 

controlled (CNC) vertical-type machining center.  

The vibration signals were obtained from Kistler 

8702/B25M1, single-axis K-shear accelerometer, 

mounted on the workpiece longitudinally to the 

drilling direction, i.e. the Z-axis. The accelerometer 

has a measuring range of ± 25 g, with a sensitivity 

of 200 mV/g (± 5%), while its frequency response 

band ranges from 1 to 8000 Hz. Referring to the 

spindle motor and the feed motor drives, the related 

current signals were obtained with two self-powered 

AC current transducers, LEM type AK 50 C10, with 

galvanic isolation between the primary (high power) 

and secondary circuits (electronic circuit). The 

transducers have a primary nominal input current up 

to 50 A and give an analogue output signal in the 

range of 0-10 V DC, with an accuracy of ± 1% and 

response time < 100 ms. Moreover, non-contact tool 

temperature measurements were performed with the 

use of Eurotron’s IRtec series Rayomatic 10, a 

compact digital infrared (IR) temperature transmitter 

(IR pyrometer) mounted onto the tool bracket, at a 

distance of d=10 cm from the drill point, with an 

angle of =30o from the drill axis. The measuring 

temperature range of the specific transmitter is from 

0 to 600 oC, while it offers accuracy of ± 1% rdg 

and repeatability of ± 0.5% rdg, with a target-to-

distance ratio of 25:1. The transmitter was calibrated 

measuring the known temperature of a specific heat 

source. Finally, the data from the above four sensors 

was recorded to a PC, with a sampling rate of 8 

KHz, using a National Instruments Cdaq-9172 data 

acquisition unit and National Instruments LabVIEW 

software. 

 

 
 

Figure 3: The experimental set-up 

 

The experiments included drilling operations 

performed by a HSS-Co5% twist drill of 10 mm 

diameter, under dry conditions, to a number of 

reinforced C-70 steel workpieces (length=170mm, 

width=170mm, height= 20mm). Totally 109 bottom 

holes, of depth=15mm, drilled per each workpiece 

(Figure 4). The drilling path started from the 1A 

hole, continued to 1B, 1C and so on, finishing the 

first line (No. 1) of the workpiece. The process was 

continuing to the next lines (2 to 11), until the last 

hole 11K (Figure 5).  

The whole process was provided with the use of 

Missler TopSolid, CAD/CAM software. The 

selected optimum drilling conditions were S=600 

RPM regarding the spindle speed and F=100 

mm/min for the feed rate. The duration for a drill 

was 9 seconds, and for the whole workpiece was 

estimated around 1800 seconds. The latter includes 

the “dead” –or rapid movement– time between each 

drill. One of the aims of this study was to 

intentionally hasten the drill wear by performing 

certain drilling operations, in specific workpieces, 

with “false” conditions (S=800 RPM, F=110 

mm/min) between the “normal” sets of drillings, in 

order to investigate the impact of drill aging, and 

consequently drill wear, to the monitored 

parameters. For this scope, exactly after the drilling 
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of hole 11K of the second workpiece, i.e. hole 218, 

the above “false” cutting conditions were applied for 

the operation of a whole workpiece; the experiment, 

then, continued under the aforementioned optimum 

conditions. 

 

 
 

Figure 4: 3-D view of the workpiece model 

 

  
 

Figure 5: Top view of the workpiece model 

 

3. RESULTS AND DISCUSSION 

 

The previously described cutting conditions and 

drill aging strategy resulted to a quite significant 

deterioration of the tool’s performance, evident even 

from the third operated workpiece (WP 3) and, 

finally, lead to a worn-out state due to which the 

tool failed and stopped any further drilling on the 

fourth workpiece (WP 4), after 367 drilled holes.  

Figure 6 presents the raw pattern of the obtained 

Z-axis vibration signals for the time period of 

specific drillings and the evolution of this raw data 

through the whole experimental process. As it can 

be seen in Figure 6, the acquired vibration signals 

can be characterized as consisting of short 

oscillatory transients of high, narrow band 

frequency, occurring randomly within the period 

required to drill one hole. With the progress of drill 

wear, the amplitude of these transients starts to 

increase. Immediately before breakage, these 

transients resemble those of a resonating system 

responding to some impulsive excitation in the 

cutting process at a frequency which is independent 

of cutting conditions such as feed or speed. By far, 

the majority of the vibration signals consist of 

frequency components related to the dynamics of the 

cutting system. 

 

 
 

Figure 6: Raw Z-axis vibration signals for the time 

period of specific drillings (*g=9.81 m/s2) 

 

More specifically, there is an indicative 

“response” of the measured raw signal to the 

progressively evolving tool wear. The drilling of 

hole 2B of the first operated workpiece (WP 1), 

generated vibrations within the range of 

approximately ± 2 g, in a quite smooth signal 

pattern; a regular operation of a brand new tool is 

reflected to this steady-state stage. After 33 drillings, 

hole 43 gave a vibration signal similar to that of hole 

2B of the same workpiece. However, this signal 

appears to be less smooth due to the presence of 

numerous spikes across its length, especially at its 

last part where some vibration spikes reach values 

near to 10 g. The respective hole 5E of the next 

operated workpiece (WP 2), i.e. hole 152, gave a 

vibration signal with a, certainly, rough second half 

part in which several spikes fluctuate around the 
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region of 10 to 12 g. Moreover, approximately 8 

seconds from the start of the specific drilling 

vibrations approach values near to 25 g, i.e. the 

measuring limits of the employed accelerometers. 

Even from this stage of the experiment, the pattern 

of the generated vibration signal reveals possible 

slight or moderate tool wear, a remark that can be 

affirmed observing the next vibration signal, 

regarding the drilling of hole 5E of the WP 3 (hole 

261). Here, the roughness of the signal, in the last 5 

seconds, became more intense and more 

characteristic of a possible severe wear state of the 

tool. The described dramatic change of the vibration 

pattern could be considered as a preliminary 

predictive index of excessive tool wear and, 

consequently, tool failure which occurred indeed, as 

mentioned, during a drilling on the next workpiece 

WP 4. 

 

 
 

Figure 7: Raw temperature signatures for the time 

period of specific drillings 

 

In the same way as vibration signals, thermal 

signatures, in Figure 7, appear to “react” to tool 

wear. When the tool is brand new (hole 10), its 

regular operation leaves a temperature offset that 

fluctuates between 80 and 130 C. As the tool 

continues to drill, the overall temperature level of 

the signal increases, reaching to a maximum of 150 

C for hole 43 and 220-240 C for holes 152 and 

261. It should be noticed that, although the 

maximum temperatures for holes 152 and 261 seem 

to be practically equal, the overall level and the 

average value for hole 261 appears slightly 

increased in contrast to that of hole 152. 

 

 
 

Figure 8: Raw spindle motor current signals for the 

time period of specific drillings 

 

On the other hand, according to Figure 8, spindle 

motor current signal, in a raw form, may not be 

considered as legible tool wear index. Feed motor 

current showed a raw signal pattern similar to the 

spindle motor current’s one and it is neglected in 

this analysis. It can be said that, both spindle motor 

and feed motor current do not “react” to tool wear as 

dynamically as other parameters, such as vibrations 

and tool temperature; the obtained raw signals from 

holes 10, 43, 152 and 269 have similar 

characteristics and any effort to interpret and 

correlate them in terms of tool wear is, at least, 

unreliable. Thus, for these two parameters, further 

analysis and signal processing are reckoned as 

necessary. 

In order to configure a more in-depth view of the 

impact of tool wear to the measured parameters, 

statistical (time domain) and Fast Fourier 

Transforms (FFT) analyses (frequency domain) 

were performed. Statistical analysis of the acquired 
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signals included the assessment of mean, average, 

maximum, variance, kurtosis and RMS values in 

each signal. Kurtosis and RMS performed 

significantly well as tool wear indicators but kurtosis 

proved to be unable to “notify” and obviate tool 

breakage. Hence, suggestively, Figure 9 shows the 

chart resulted from the RMS values of the obtained 

vibration signal and the related best fit curve, 

through the entire duration of operations to the first 

three workpieces, i.e. from hole 1 (WP 1 – 1A) to 

hole 327 (WP 3 – 11K). Both the obvious trend of 

the RMS values and, mostly, the best fit curve show 

the expected; vibration measurements react to drill 

wear, as it has been also noticed from Figure 6. The 

machine tool is a dynamic system and as the wear of 

the tool increases, cutting forces increase too and 

consequently the system’s response will also 

increase. This “interaction” between the tool wear 

evolvement and vibrations, renders to an 

exponential curve, as shown in Figure 9. 

 

 
Figure 9: RMS values of the obtained vibrations and 

the related best fit curve (*g=9.81 m/s2)

 

The corresponding function of the exponential 

curve is giver from equation (1). 

 

                               
hev 008.0186.0                   (1)             

 

where v is the amplitude or the vibration value, in g 

(vertical acceleration), and h is the number of drilled 

holes which corresponds to tool use and, 

consequently, to tool wear. Experientially, in such 

cases, there is a threshold where the slope of the 

curve increases in a sensible way that reflect the 

worn-out state of the tool. For the current cutting 

conditions, workpiece material and tool structure 

this threshold is estimated between hole 327 and 

340. 

In the same way, Figure 10 shows the chart 

generated from the RMS values of the obtained tool 

temperature signal (tool thermal signature) and the 

related best fit curve, for the same duration as Figure 

9. As the tool wear increases during the time and the 

process, the heat balance among the tool, the piece 

and the chip is unsettled and consequently the 

cutting edge temperature increases too. As with the 

RMS vibration values, here, RMS tool temperature 

values reveal the same substantial interaction 

between tool wear and tool temperature that is 

noticed in Figure 7 and can be described by a 

logarithmic approach, i.e. the best fit curve that 

corresponds to the function that is given by equation 

(2). 

 

                        17.96)ln(45.12 hT             (2)   

 

where T is the amplitude or the tool temperature (in 

C). The logarithmic form of the above best fit curve 

can be explained by the fact that, after a prompt 

increment to the tool’s temperature value (transient 

state), its finite heat capacity decelerates the rise of 

the temperature within the tool material until a 

critical “breakdown” in which the tool glows and 

fails due to excessive wear and/or dissolving. 

 

 
Figure 10: RMS values of the measured tool 

temperature and the related best fit curve 

 

Figure 11 presents the chart resulted from the 

RMS values of the obtained spindle motor current 

signal and the related best fit curve, from drilled 

hole 1 to 327. There is a slight, but evident, trend of 

the RMS values of spindle motor current toward the 

number of drilled holes and, consequently the tool 

wear. This trend can be described by the linear best 

fit curve in the same figure and mathematically 

represented by equation (3). 

 

                         5.46013.0 hI s
                 (3)       

 

where Is is the amplitude or the spindle motor 

current (in A). This linear function reflects the 

slowly evolving increment to the spindle current’s 
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values as the tool passes from the initial wear state 

to moderate, severe and, finally excessive wear state 

(worn-out). In other words, when the cutting tool is 

almost new, it drills under optimum performance 

consuming the less possible spindle motor 

power/current. As the tool continues drilling, its 

cutting edge cannot perform in an optimum way 

and, therefore, the tool needs more power; as a 

result, the spindle motor current consumption 

increases progressively with the tool wear. 

 

 
 

Figure 11: RMS values of the measured spindle 

motor and the related best fit curve 

 

During the analysis of the obtained signals that 

were evaluated in this work, the feed motor current 

proved to be the less representative parameter for 

tool wear detection. As it has been already noticed, 

raw data showed that feed current presents an almost 

stable behaviour against progressive tool wear, a 

fact that is confirmed by the statistical analysis, in 

time domain, of this signal. Figure 12 shows the 

evolution of the RMS values of the obtained feed 

motor current signal and the related best fit curve, 

for the operation of the first three workpieces. It is 

clear that, the major part of these RMS values 

ranges from 1 to 3 A with several, but random, 

spikes across the entire signal, that reach values 

from 4 to 5 A. Similarly to the spindle motor current 

case, the best fit curve for the feed current is linear. 

 

 
 

Figure 12: RMS values of the measured feed motor 

and the related best fit curve 

 

However the feed motor current’s amplitude 

curve of Figure 12 remains constantly to the value 

of approximately 1.5 A and, consequently, does not 

indicate any interaction between the tool wear and 

the feed motor current. The relative linear function 

is given by equation (4): 

 

                      44.1107 5 hI f
                (4)       

 

where If is the amplitude or the feed motor current 

(in A). As for spindle motor current, the above best 

fit curve is described by a linear function, in the 

form of bxay . In this case, the slope of the 

curve is 
5107a  and, thus, it can be neglected 

resulting to a nearly constant feed motor current 

44.1fI
, independent from tool wear.  

In addition to statistical analysis, Fast Fourier 

Transforms from time domain to frequency domain 

is also a widely reported signal processing 

technique, for such indirect methods of tool wear 

monitoring. FFT is an efficient algorithm to compute 

the discrete Fourier transform (DFT) and its inverse. 

In this work, FFT analysis was applied to the raw 

data of the obtained signals, using a 3rd order 

Chebyshev bandpass filter with cutoff frequency 

nc=4 KHz. Figure 13 presents the results of this 

analysis to the signals of vibration for holes 10, 43, 

152 and 261. The presented power spectral density 

(PSD) of each signal is in fact the square of the FFT 

(magnitude).  
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Figure 13: FFT analysis of the obtained vibration 

signals (*g=9.81 m/s2)

 

 

 
 

 

Figure 14: FFT analysis of the obtained tool 

temperature signatures 

 

As other researchers have already mentioned

[25], different combinations of cutting conditions 

result in different patterns and amounts of drill wear. 

The various drill wear patterns may change the 

resulting vibration signatures in the frequency 

domain. Therefore, it is important to investigate the 

effect of each type of wear on the vibration power 

spectra generated during drilling process. This is 

accomplished by performing “controlled” wear 

experiments. In the experiments of the current work, 
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due to lack of “controlled” aging mechanism, mainly 

two types of wear were experimentally induced on 

the drill, and the resulting vibration and temperature 

spectra were evaluated. These types of wear are the 

outer corner wear and the flank wear according to 

Kanai and Kanda [26] classification. According to 

the same researchers, the dominant types of wear 

which result in drill failure and breakage are: chisel 

wear, outer corner wear, flank wear and margin 

wear. 

Figure 13 indicates qualitively the increment of 

the vibration signal’s power amplitude, in the 

frequency range of 1.0-2.5 KHz, gradually with the 

progress of wear. An almost identical trend is seen 

in the temperature related signal (Figure 14). In 

general, the vibration signals measured in the Z-axis 

direction are predominantly affected by corner wear 

and margin wear. Flank wear and chisel wear have 

similar, but lesser effects on the vibration spectra, as 

other researchers have mentioned [27]. The results 

show, undoubtedly, that both vibration and 

temperature spectra can be used to identify worn 

drills. 

Figures 15 and 16 show, in an unambiguous 

way, the impact of tool wear to the tool edge’s 

surface morphology. These images, obtained by a 

microscope lens, confirm the observed and 

previously discussed progressive tool wear that was 

indicated, mainly, by both vibration signals and tool 

temperature signatures and, secondly, by the spindle 

motor current measurements. 

 

 
 

Figure 15: Microscope-based view of the performed 

tool’s edge before the experiment 

 

 
 

Figure 16: Microscope-based view of the performed 

tool’s edge after 367 drills (excessive wear) 

 

4. SUMMARY 

 

The presented experimental study investigated 

the efficiency of vibration signals, tool temperature 

signatures, spindle motor current and feed motor 

current as in-process tool wear and/or breakage 

indices in drilling. 

A brand new drilling tool was employed to 

perform several drills under selected “normal” and 

“false” conditions in order to achieve a significant 

level of wear. During these operations, an 

accelerometer, an IR temperature transmitter 

(infrared pyrometer) and two current transducers 

were used to obtain the generated signals of 

vibration, tool temperature and spindle/feed currents 

respectively. Statistical parameters in time domain, 

such as RMS, and FFT analysis in frequency domain 

were used to extract the meaningful information 

from the raw data. 

The results of this work indicated a significant 

interaction between specific signals and the 

dynamics of the drilling process, i.e. the slowly 

evolving tool wear. Even from a quick view to the 

raw signals, vibrations and tool temperature prove 

their supremacy as quite reliable and robust tool 

wear prognostic indices. Further signal processing 

of these two parameters clearly confirms their 

reaction to tool wear, verifying Figure 2. Although, 

it can be said that, tool temperature acquisition was 

proved to be more suitable for implementation in a 

real industrial environment, in contrast to vibration 

monitoring techniques, which are strongly 

dependent on noise, cutting conditions and specific, 

only, tool wear types. With regard to spindle motor 

current, it was noticed that the acquired raw data 

was inadequate to indicate a clear correlation 

between this parameter and the tool wear. 

Nevertheless, statistical processing helped to extract 

a quite crescive curve reflecting a linear relation 

between spindle motor current and tool wear. On the 

other hand, feed motor current was found as 

contraindicative parameter in this study. Neither raw 

data analysis, statistical parameters nor FFT analysis 

showed that tool wear could induce the 

characteristics of feed motor current signal.  

In conclusion, generally speaking, the simpler a 

TCM system is, the less likely it is to fail. Reliability 

was rated as being the most important concern by 

those actually using some form of TCM. Thus, it is 

obviously vital to minimize the complexity of any 

future TCM system [6]. Further ambition of the 

current research team is to:  

Develop practical vibration monitoring 

techniques which are sensitive to tool conditions 

but relatively insensitive to cutting conditions 

and sensor location. 

Assess the applicability of infrared 

thermography, with the use of portable thermal 

imagers, to tool temperature data acquisition. 

Prepare and implement several precise and 

“controlled” rapid tool aging strategies. 

Investigate same or similar sensor-based 

methods for in-process tool wear/breakage 

monitoring in other cutting operations, e.g. 

turning or milling. 

Enrich the presented monitoring system with a 

fuzzy logic and neural network based 

classification tool. 
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