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Accepted: 30 August 2012 This paper presents processing and analysis techniques to apply LiDAR data to estimate tree
diameter at breast height (DBH) – a critical variable applied in a large number of forest
management tasks. Our analysis focuses on the estimation of DBH using only LiDAR-derived
tree height and tree crown dimensions, i.e., variables accessible from aerial observations. The
modeling process was performed using 161 white and red pine trees from four 3850 m2 plots in
the Forêt de l’Aigle located in southwestern Quebec. Segments of the LiDAR data extracted
for DBH estimation were obtained using the Individual Tree Crown (ITC) delineation method.
Regression models were investigated using height as well as crown dimensions, which increased
the precision of the model. This study demonstrates that DBH can be modeled to acceptable
accuracy using altimetry data and automated data processing procedures and then be used
in high-precision timber volume assessment.
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Introduction

The general trend toward precision and sustain-
able forestry calls for a transition from mapping rel-
atively homogeneous forest stands and manually in-
terpreting their content to the use of automated,
computer-assisted analysis of high-resolution remote
sensing data realized on the individual tree crown
basis.

The potential of LiDAR (Light Detection And
Ranging) technology to provide data applicable to
forest management is increasingly well documented
[1]. LiDAR can be used to estimate a wide range
of forest inventory parameters including individual
tree measurements [2] and timber inventory [3] as
well as for forest structure analysis [4–6] and stand
visualization [7]. Altimetry data collected by LiDAR
sensors can complement the multispectral images in

obtaining more precise forest inventory information
derived from volumetric characteristics [8, 9]. With
the rise of the importance of forests as source of bio-
fuel, estimating precisely biomass becomes of strate-
gic importance [10].

One of the most important input variables for
forest management decisions is timber volume. Stand
timber volume is traditionally estimated by summing
the volumes of individual trees within the sample
plots. Individual tree volume is in turn estimated
by allometric taper equations based on field mea-
surements of diameter and height [11]. These equa-
tions are generally species and region specific [12].
A comprehensive set of relationships between field-
measured variables used in timber volume estima-
tion is provided in [13]. The most reliable single vari-
able for estimating a large number of forest indices,
such as volume and biomass, is the mean diameter at
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breast height (DBH) [14], which can be obtained pre-
cisely from field measurements but not directly using
remote sensing. Therefore, volume estimation with
a sufficient precision of an entire forest tract usu-
ally requires considerable field sampling effort and
expense. The use of LiDAR-derived canopy height
models (CHMs) at the individual tree level paves the
way to semi-automated estimation of timber volume.

Indeed, if DBH can be estimated from those for-
est parameters that can be measured by LiDAR sen-
sors, namely tree height and crown size and shape,
other biophysical tree parameters, such as tree vol-
ume V can then be estimated from DBH using pre-
viously established equations. For example, the re-
lationship between DBH and the crown width in an
open stand was studied in [15]. The need for fur-
ther studies on the issue of the conversion of remote
sensing-derived crown size into stem diameter esti-
mation was emphasized in [8].

In this study, we discuss a methodology for the
assessment of DBH using exclusively LiDAR data,
by determining the relationship between DBH and
LiDAR-derived tree height and crown parameters for
two large and overtopping tree species, eastern white
pine (Pinus strobus) and red pine (Pinus resinosa).
In order to obtain tree crown parameters, individ-
ual tree crowns must be identified and delineated.
Several methods for automated delineation of tree
crowns from high-resolution imagery have been de-
veloped for precision forest management. Approach-
es based on morphological operators [16], Voronoi
diagrams [17], local maxima analysis [18] and oth-
ers have been explored. The Individual Tree Crown
(ITC) method [19] was used in our experiments due
to the maturity of the technology, the existing soft-
ware tools, and the repeatability of the results.

This paper is organized as follows. Following the
Introduction section, the processing scheme of Li-
DAR data is presented. The next two sections ex-
plain two-stage detection of individual trees – at the
stand and the tree-crown level. Then, extraction of
tree parameters from LiDAR data is described. The
final section discusses the derivation of timber mass
models.

Data flow management

The sequence of operations executed on the in-
put data acquired by the airborne laser scanning is
shown in Fig. 1. The raw input data are preprocessed
in order to obtain precise (x, y, z, intensity) point
cloud. Tree stand delineation procedures determine
the forest areas within which the assessment of tim-
ber volume is performed. The next procedure is the

detection of individual tree crowns and the calcula-
tion of individual tree parameters required for tim-
ber volume models. The results of the assessment can
subsequently be used in forest management for such
tasks as the calculation of the Annual Allowable Cut
(AAC) or silvicultural planning.

Fig. 1. Data flow diagram.

The laser scanning data used to develop model
presented in this paper were acquired by LaserMap
Image Plus Inc. in August and November, 2005 for
an approximately 75 km2 study area, and deliv-
ered in 1 km2 tiles. The acquisition resulted in the
point footprint of 25 cm and the pulse density of 2
pulses/m2. Data were pre-processed using Optech’s
REALM software and delivered by the data provider
as raw points and as raster layers. In order to pro-
duce fine-grained raster models of known derivation
using data combined from the two acquisitions, raw
point data were re-processed in-house.
Plots were located in fire-originated eastern white

pine and red pine stands on sandy fluviatile de-
posits along the Eagle River lowlands in the Forêt
de l’Aigle, southwestern Quebec. We used four ex-
isting plots of 35 m radius, previously established
to study white pine response to thinning. Although
thinned in 1998 (38% basal area removed), they have
all over 30 m2/ha in basal area and DBH of over 19
cm (Table 1). DBH and species were recorded for all
trees with DBH > 9.1 cm in 2004. DBH was mea-
sured at standard height (1.3 m above ground) us-
ing a caliper (1 mm precision). Tree crown position
was classified as dominant, co-dominant, intermedi-
ate, or oppressed. The precise position of the center
of each tree (at breast height) to the center of the plot
was described by polar coordinate with distance (ob-
tained with a rangefinder/hypsometer (Haglof Ver-
tex 3) and angle (with a compass). Additional field
work was done in 2006 to determine the absolute
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location of the center of two plots using high preci-
sion GPS (5700/Trimble R7 and 5800/Trimble R8)
with station-based correction. These were precisely
co-registered (< 0.5 m) to the LiDAR models (de-
scribed below) using visual analysis of relative tree
locations. The two remaining plots were registered
to the LiDAR models using approximate GPS coor-
dinates and visual analysis.

Table 1

Structural and compositional characteristics of sample plots.
Trees targeted for DBH estimation are dominant and

co-dominant pines.

Plot

number

1 2 3 4

Latitude 46.24◦N 46.22◦N 46.22◦N 46.21◦N

Longitude 76.34◦W 76.34◦W 76.33◦W 76.32◦W

Number
of trees

All trees 169 243 336 255

Dominant
trees

54 47 73 68

Targets
correctly
delineated

34 29 47 51

DBH
(cm)

Mean 26.7 21.4 19.1 22.5

StdDev 15.5 12.8 11.3 14.4

Basal
area
(m2/ha)

White
pine

29.9 21.0 25.6 31.5

Other
coniferous

1.9 3.3 6.8 4.9

Hardwood 0.9 6.4 1.4 0.7

Total 32.7 30.7 33.7 37.0

Tree stands extraction using LiDAR

data

Automated extraction of the forest zones was per-
formed using the Canopy Height Model (CHM). This
approach allows for the application of exclusively Li-
DAR data, and limiting manual delineation from for-
est inventory maps. The delineated tree stands were
obtained through scale dependent [20] thresholding
of CHM.

CHM is generated as the difference between the
top of the vegetation model (Digital Surface Model,
DSM) and a model of the bare-earth surface (Digital
Elevation Model, DEM). For each tile, points classi-
fied by the data provider as “ground” were extracted
using a Perl script and imported into ESRI ArcGIS
to construct the DEM. Points were converted first
to a Triangulated Irregular Network (TIN), resulting
in linear interpolations between neighboring points,
and then to a raster of 0.5 m resolution.

To produce the DSM, the points representing the
top of the vegetation canopy must be selected from
the point cloud. The selection procedure consisted
in selecting the locally highest points while excluding
outliers, as identified by the data provider. Dedicated
shell and Perl scripts were produced to extract sur-
face points from the raw ASCII files, which were then
converted to TINs and rasters using the same pro-
cedure as for the DEM. The DEM and DSM layers
were then subtracted to generate the CHM. Finished
tiles were mosaicked in PCI’s OrthoEngine to gener-
ate seamless digital models. Sample digital models
for a part of the Forêt de l’Aigle area are illustrated
in Fig. 2.

Fig. 2. Examples of digital terrain models: a) DEM,
b) DSM and c) CHM d) a sub-area of c) showing indi-
vidual tree crowns. The circle indicates one of the study

plots.

The Canopy Hight Model, obtained by subtract-
ing data shown in Fig. 2b from the data in Fig. 2a,
is depicted in Fig. 2c. The encircled portion of the
image indicates the location of Plot 1.

Individual tree crown delineation

The ITC method was originally developed to de-
lineate tree crowns from high-resolution aerial im-
agery. First, it identifies locally dark pixels, and us-
es these as starting points for a region-growing al-
gorithm to detect valleys of shadow between tree
crowns. These valleys are then connected to pro-
duce a bitmap outlining individual crown candidates.
Then, the other step is the crown delineation in the
spaces between the shadow valleys. The maximum
jump distance that can be used to split an isol is
4 pixels. With a resolution of 60 cm ITC can split a
crown that is 2.4 m wide. ITC Suite is available as
an add-on tool to PCI Geomatica.
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By using ITC on the CHM rather than imagery,
layover and illumination effects were avoided. A mod-
ification of the valley-following technique using the
water-flow accumulation algorithms in ArcDesktop
produced somewhat smaller crowns with more real-
istic crown shapes (Fig. 3).

Fig. 3. Results of tree crown delineation. White dots in-
dicate the stem position of dominant and co-dominant

field-mapped trees.

Extraction of tree parameters

Tree height and crown dimensions were estimat-
ed for individual field-measured dominant or co-
dominant pines based on the CHM. In cases where
a crown included more than one stem, we used data
from the larger tree.

Tree height

The height H of individual trees was determined
using LiDAR points classified as canopy or ground
points (Fig. 4a). The points involved in the calcu-
lations were located inside volumes bounded by the
ITC-delineated crowns (Fig. 4b). Height was defined
(Fig. 4c) as the difference between the elevations
of the highest canopy point and the mean ground
height.

Crown dimensions

The feasibility of calculating mean tree crown di-
ameter at the plot level from LiDAR-derived tree
parameters was demonstrated in [21]. Two crown di-
mension variables: length (L) and width (D) were
defined as the measure of the crown size and shape.
The crown length is the distance between the two
most distant cells in the raster polygon forming the
isol. It corresponds roughly to the diameter of a circle
circumscribed on the delineated raster shape of the
tree crown. The crown width is calculated by draw-
ing a line perpendicular to the line of the length (L)
at its center. The width is the distance between the

first and the last intersection with the isol. Exam-
ples of tree crowns and their dimensions L and D are
illustrated in Fig. 5.

Fig. 4. Schematic illustration of the procedure for calcu-
lating tree heights.

Fig. 5. Illustration of crown length L and width D.

Timber Measure Modeling

Data Analysis

A total of 161 tree crowns were correctly delin-
eated: 145 were white pines and 16 red. Summary
statistics for these trees are in Table 2.

Table 2

Summary statistics for trees used in the analysis.

Tree
DBH
[mm]

Tree
Height
[m]

Crown
Diameter
[m]

Crown
Length
[m]

Min. 23.10 19.75 2.68 1.34

Mean 44.00 28.89 5.87 3.78

Median 43.35 28.98 5.91 3.75

Max. 65.30 34.68 10.48 6.32

Std. Dev. 9.55 2.62 1.33 0.97
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Box plots of the trees in each plot (Fig. 6) show
that the distribution of DBH in plots P1, P2 and P4
are similar. The tree stem diameters in Plot 3 are
somewhat smaller.
A test of the normality of data distribution was

performed and assessed using the Q-Q (quantile-
quantile) plot shown in Fig. 7. Expected normal val-
ues (Y-axis) were calculated using Blom’s propor-
tional estimation formula. The X-axis represents the
normalized distribution of DBH, with zero mean and
unity variance. The form of the plot is an indication
that the data from all the plots can be clustered and
used together for the model development.

Fig. 6. Box plots of the tree DBH distribution for the
four sample plots.

Fig. 7. Q-Q plot for trees in four sample plots.

Model Development

The relationship between H and DBH over the
full range of H usually takes form of a sigmoid curve.
This relationship is best approximated by a non-
linear function. Sigmoidal growth equations such as
the Chapman-Richards, Weibull – type, and Schnute

equations provide the most satisfactory results [22].
Polynomial-type height-diameter models have to be
treated with caution, since their extrapolation may
often lead to unrealistic height predictions [23]. De-
velopment and evaluation of relative performance of
several nonlinear tree-height models based on diam-
eter measurements for 9 boreal forest tree species in
Ontario was reported in [24].
The most frequently used Chapman-Richards

function can be expressed as:

H = 1.3 + a(1 − e−bDBH)c (1)

where H is total tree height in meters, DBH is out-
side bark tree diameter at breast height (1.3 m) in
centimeters, a, b, and c are asymptote, scale and
shape parameters, respectively. In this study, we
search for an inverse equation, the general form of
which is

DBH = f(lnH) (2)

Different criteria can be used in order to determine
the best regression model, including maximizing the
coefficient of determination R2, minimizing the root
mean square error RMSE, forward selection, and
backward elimination. Using information criteria for
multivariate model selection [25] has been shown to
be superior to heuristic methods, such as stepwise
regression. In the process of optimal model selection
the Akaike Information Criterion (AIC) was used
[26]. AIC is a function of the number of observa-
tions n, the residual sum of squares (RSS) from the
estimated model, and the number of parameters p,
as shown in Eq. (3).

AIC = n ln

(

RSS

n

)

+ 2p (3)

The first term in Eq. (3) is a measure of the model
lack of fit while the second term is a penalty term for
additional parameters in the model. The preferred
model is the one with the lowest AIC value. Differ-
ent model variants of Eq. (2) were investigated us-
ing the three LIDAR-derived parameters (H, L, D)
within our model selection procedure. A summary of
twelve different models is given in Table 3.
The model with both the lowest AIC value (AIC

= 521.2) and the highest value of R2 (R2 = 0.732) is
the model of the form

DBH = a0 + a1H + a3 log D + a4 log L (4)

where

a0 = 330, a1 = 7.8, a2 = −366,

a3 = 25.9, and a4 = 11.2.

The graph of the measured DBH values versus the
values from the fitted model as in Eq. (4) is shown
in Fig. 7.

Volume 3 • Number 3 • September 2012 83

Authenticated | 89.72.181.236
Download Date | 11/18/12 8:28 PM



Management and Production Engineering Review

Table 3
Summary of models with the height and crown size terms.

No Terms R2 AIC

1 H, D 0.709 530.3

2 H, L 0.660 555.4

3 logH, D 0.697 536.8

4 H, logH, D 0.722 524.6

5 H, logH, L, D 0.729 523.1

6 H, logDlogH 0.716 526.4

7 H, logH, logDlogL 0.728 521.4

8 H2, logH, logDlogL 0.727 522.2

9 H, sqrtH, logDlogL 0.728 521.7

10 H, logH, sqrtH, logDlogL 0.728 523.4

11 H, logH, logD, logL 0.732 521.2

12 H, logH, logD 0.725 523.1

Fig. 8. Measured versus fitted DBH for model (4).

It can be noticed from Table 3 that the impact of
the crown width D on the model precision is more sig-
nificant than that of the crown length L. This can be
interpreted as the importance of the level of develop-
ment of the crown in both perpendicular directions.
Indeed, white pine, the dominant tree species in our
sample, can exhibit very asymmetrical star-shaped
crown, as one can see in Fig. 2d.

Conclusions

The goal of this study was to develop a methodol-
ogy for the assessment of timber volume from remote
sensing laser scan data. A relationship between DBH
and LiDAR-derived tree height and tree crown para-
meters was successfully established, allowing for the
use of standard tree volume allometric equations for
forest management tasks. The models investigated
here were limited to even-aged pine stand (mostly

white pine), where tree crowns are large and most-
ly well individualized. Additional field samples are
needed to assess performance in other stand types.
The introduction of tree crown parameters, crown

length and crown width, significantly enhanced the
precision of the assessment of DBH. This demon-
strates the importance of efficient crown detection
and delineation algorithms using LiDAR data. The
ITC method applied in this work, although ma-
ture and well-studied, was designed primarily for
panchromatic and multi-spectral imagery. Correct
segmentation of tree crowns remains a challenging
scientific task.
The work presented in the paper focused on

the assessment of individual tree parameters indis-
pensable to implement precision forest inventory.
Plot-level parameters, important for forest manage-
ment practices, can be obtained through regression
analysis and cross-validation with plot-level field-
measured parameters. It should also be noted that
the height-DBH relationships are known to be affect-
ed by local environmental conditions and often vary
within a geographic region. Further development of
individual-tree height–diameter models specific for
different ecoregions is of critical importance for for-
est management [27].
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