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Introduction

In the paper we are considering supply networks
that deal with fast perishing material. Such networks
can be build for the needs of sugar beet or fruit and
vegetables processing industries. In such industries
time of the production is very important, and trans-
portation costs must be also taken into consideration.
The production time is determined by the raw mate-
rial allocation to production units, and transporta-
tion cost by transportation plans. The raw material
allocation is obtained by solving allocation problem,
the transportation plans by solving the transporta-
tion problem. In the paper we consider those two
problems jointly.
The problem of raw material allocation to pro-

duction units is based on the problem of task allo-
cation in a complex of operations and is well known
and solved (see [1–3]). It finds its applications main-

ly in computer systems (e.g. task allocation among
parallel processors), and in manufacturing systems,
where the task consists in processing of a raw ma-
terial in the given amount into a product. The aim
of the task allocation is to find such an allocation
that minimizes a time needed to finish all tasks (or
to finish the processing of a raw material in the case
considered). In manufacturing systems, finding a so-
lution for allocation of a material is only one step in
very complex decision making process. After finding
the allocation of a raw material, another problem
appears. Namely, how to deliver a raw material to
production units, and distribute manufactured prod-
uct to the receivers. This problem is well known in
Operation Research as a transportation problem and
solved (see e.g. [4]). Those two problems often exist
in one system and are interdependent.

The solution of raw material allocation problem
gives the data for the transportation problem, and
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the change in transportation plans may cause the
change in the allocation and in processing times
as a consequence. In such systems, we are dealing,
in fact, with multi-criteria problem, when we want
to minimize the processing time on the one hand,
and to minimize the transportation costs on the
other hand. It is justifiable to treat the processing
time as a cost since a material spoils with time,
and operational costs, like energy cost or employ-
ment costs, depend on time. To compare cost of
the production and transportation, we have to de-
termine the appropriate coefficient cost/time that
enable us to measure the production cost in the
same units as the transportation cost. This coeffi-
cient can be given by an expert or estimated us-
ing statistics. The results of the research present-
ed in [5] show that, in many cases, slight deteriora-
tion of the optimal raw material allocation can result
in the improvement of the total cost of production
and transportation. So, much better results might
be achieved by solving problems of allocation and
transportation jointly. In the literature, joint con-
sideration of different well known elementary sub-
problems are often considered to improve the qual-
ity of a decision for the problem as a whole. Let us
present just a few elementary sub-problems impor-
tant for manufacturing and logistic systems which
are the area of interest for the paper: facility lo-
cation, vehicle routing, task scheduling, assignment,
queuing, inventory management, task allocation, raw
material allocation, resource allocation. The select-
ed joint problems which are mainly the connection
of two selected elementary sub-problems are as fol-
lows: location-routing [6–9], location-scheduling [10,
11], inventory-location [12, 13], inventory-routing
[14, 15], routing-scheduling [16–18], production-
inventory [19], production-transportation [20].
In this paper we are dealing with the minimiza-

tion of the total cost of the production and trans-
portation. The minimization of cost is one of the
main aims in supply chain management, see the sur-
veys of [21–23].
In the paper, the production cost is determined

by the longest processing time on all production
units. In a consequence, the total cost is strongly
non-linear and non-differentiable function. So, the
dedicated solution algorithms have to be developed.
The paper is organized as follows. After Introduc-

tion we make a model definition and problem formu-
lation. After it, solution for the convex version of the
problem is presented. The next section is devoted to
briefly describe solution algorithms developed to deal
with non-convex version of the problem. Then the
idea of computer system integrating the developed

algorithms with numerical examples are described.
Final remarks complete the paper.

The model and problem formulation

Let us consider a supply network which consists
of three sets: suppliers of a raw material, production
units, and receivers of the product. Each set is a part
of at least one from the consecutive stages: trans-
portation of the raw material, production, trans-
portation of the product. Paths between every pro-
duction unit and supplier or receiver connect the
stages The structure of the supply network under
consideration is given in Fig. 1. The parameters and
variables described in Table 1 can be gathered as
appropriate column vectors and matrices, i.e.

w = [w1, w2, ..., wI ]
T , v = [v1, v2, ..., vK ]T ,

e = [e1, e2, ..., eR]T , v = [v1, v2, ..., vR]T ,

γ(w) = [γ1(wr), γ2(wr), .., γR(wr)]
T ,

c
′ = [c′i,r] i=1,2,...,I

r=1,2,...,R

,

and c = [cr,k] r=1,2,...,R
k=1,2,...K

,

are vectors or matrices of: available raw material,
demand for the product, production units produc-
tivities, allocation of the raw material, production
units time models, unit transportation costs of a raw
material, and unit transportation costs of a product,
respectively. The decision variables are expressed by
w = [w1, w2, ..., wR]T , x

′ = [x′

i,r] i=1,2,...,I
r=1,2,...,R

, and

x = [xr,k] r=1,2,...,R
k=1,2,...K

which denote production plan,

transportation plan of a raw material, and trans-
portation plan of a product, respectively.

Fig. 1. Structure of the supply network under considera-
tion.

It is important to note that production units can
play the role of both the receivers for a raw mater-
ial and the suppliers for a product. The condition
∃ r∈1,R (V ≤ erW ) enables us to satisfy the de-

mand V .
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Table 1
Notation.

Symbol Description

I number of warehouses of a raw material (raw material suppliers)

R number of production units

K number of warehouses of a product (product receivers)

i ∈ {1, 2, ..., I} , 1, I index of the warehouse of a raw material

r ∈ {1, 2, ...,R} , 1, R index of the production unit

k ∈ {1, 2, ...,K} , 1, K index of the warehouse of a product

wi amount of a raw material available in the ith warehouse

vk demand of a product in the kth warehouse

V total amount of a raw material allocated

V total demand of the product receivers

W total supply of a raw material

er ∈ (0, 1] productivity of the rth production unit

vr ∈ [0, V ] amount of a raw material allocated to the rth production unit

wr , ervr amount of a product planned to be manufactured by the rth production unit

x′

i,r ∈ [0, wi] amount of a raw material transported from the ith supplier to the rth production unit

xr,k ∈ [0, vk] amount of a product transported from the rth production unit to the kth receiver

Tr = γr(vr) processing time of the allocated raw material to the rth production unit

γr(·) continuous, strictly increasing function satisfying the condition γr(0) = 0

γr(wr) , γr

�
wr

er

�
time needed to manufacture the amount wr of the product on the rth production unit

c′i,r unit transportation cost of a raw material from the ith supplier to the rth production unit

cr,k unit transportation cost of a product from the rth production unit to the kth receiver

π > 0 production cost coefficient

Constraints imposed on all decision variables,
which allow determining feasible solutions, are as fol-
lows:

W =

I∑

i=1

wi ≥

R∑

r=1

vr = V , (1)

R∑

r=1

x′

i,r ≤ wi, i = 1, 2, ..., I, (2)

I∑

i=1

x′

i,r = vr, r = 1, 2, ..., R, (3)

K∑

k=1

xr,k = wr, r = 1, 2, ..., R, (4)

R∑

r=1

xr,k = vk, k = 1, 2, ..., R, (5)

V =

R∑

r=1

wr =

R∑

r=1

ervr =

K∑

k=1

vk. (6)

Constraints (1)–(3) guarantee the allocation of a raw
material v for all production units is not exceeding
the supply. Constraints (4)–(6) assure that the man-
ufactured amounts of a product fulfil the demand of
the product receivers.

The process of transportation generates costs
that can be expressed as

J1(w,x′) ,

I∑

i=1

R∑

r=1

c′i,rx
′

i,r , J1(v,x′), (7)

J3(w,x) ,

R∑

r=1

K∑

k=1

cr,kxr,k , J3(v,x) (8)

where J1(w,x′) (or J1(v,x′)), and J3(w,x)
(orJ3(v,x)) are transportation cost of a raw ma-
terial, and of a product, respectively, and they are
dependent on w (or v) via constraints. It is as-
sumed that production cost is proportional to the
time, which is necessary to manufacture the desired
amount of a product, and is denoted as

J2(w) , π max
r∈1,R

Tr = π max
r∈1,R

γr(wr) , J2(v) (9)

where π is a non-negative time-cost coefficient.
Strictly increasing function γr(wr = vrer) expresses
the relationship between the processing time of the
rth production unit and the amount of a raw ma-
terial allocated to it. Its form depends on the kind
of process modeled. For example, when considering
simple cutting process, the function is approximate-
ly linear i.e. γr(wr) = α · wr. For more complex
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processes the function takes often the polynomial
forms γr(wr) = α · wβ

r where β ≥ 0.
The total cost is expressed by the sum

J(w,x′,x) , J1(w,x′) + J2(w) + J3(w,x)

= J1(v,x′) + J2(v) + J3(v,x) , J(v,x′,x).
(10)

The optimization problem is formulated as follows.
For given: I, R, K, w, v, e, γ(w), c′, c, π for

which (1) is true, determine vector w∗(or v∗) as well
as matrices x′∗ and x

∗ feasible with respect to con-
straints (2)-(6) to minimize the total cost i.e.

J
∗

, J(w∗,x′∗,x∗) = min
w,x′,x

J(w,x′,x)

= min
w,x′,x

(J1(w,x′) + J2(w) + J3(w,x))

= J∗ , J(v∗,x′∗,x∗) = min
v,x′,x

J(v,x′,x)

= min
v,x′,x

(J1(v,x′) + J2(v) + J3(v,x)).

(11)

In general, problem has strongly non-linear, non-
differentiable, and non-convex cost function. The dif-
ficulty of this problem occurs also in its high dimen-
sionality. It is easy to see, that the problem is lin-
ear, convex or non-convex exactly when models of
the production units are all linear, convex, and non-
convex, respectively. For the first case we can use
linear programming to solve the problem. For the
second convex optimization can be performed, and
known algorithms like interior point ([24]) can be
applied. For the case, where model of at least one of
the production units is non-convex, new algorithms
must be developed. In the next section we describe
how to solve the problem when it is convex. The fol-
lowing section describes briefly algorithms developed
for the non-convex cases.

Solution for the convex version

of the problem

For most of the systems production units are de-
scribed by a time model functions in the polynomial
form γr(wr) = α · wβ

r where β ≥ 1. It implies that,
problem considered is convex and when β = 1 for all
units, also linear. Those both cases can be solved us-
ing known optimization methods like interior point
for convex optimization or even simplex for linear
cases. There are many solvers available on the mar-
ket, that solves this problems. We have chosen solver
included in LINGO ver. 11 environment designed by
LINDO Systems [25]. To solve our problem in this
system, we had to implement the model in Lingo
programming language.

LINGO Optimization Modeling Software is a tool
for building and solving mathematical optimization
models. It is designed for linear, nonlinear, quadrat-
ic, integer and stochastic optimization problems. The
programming language provided by Lindo Systems
lets to implement the model for many ways. One of
it is to define the model in one file, and the data can
be provided in other separate files. This enables us to
change in easy way the data and the size of the prob-
lem. The size of the data is theoretically unbounded.
The presentation of the solution can be very simple
performed as well. In Table 2 we present the basic el-
ements of LINGO mathematical modeling language
syntax.

Table 2

The basic syntax of LINGO mathematical modelling
language.

Mathematical nomencla-

ture

LINGO syntax

Minimum MIN =P
x′

i,r @sum(X(i,r))

For each i in the set of suppliers @FOR(Suppliers (i))

• *

= =

Exponent ˆ

Load input parametersW from
the file data.ldt

W=@file(data.ldt)

Write W to the output file
out.ldt in append mode

@text(’out.txt’,
’a’)=@write(’Supply:’,W);

Write to a file product trans-
portation plans X as a table

@text(’out.txt’,
’a’)=@table(Volume Prod);

The structure of the model is composed of sec-
tions. The main section is the MODEL section. The
most important sub-sections, highlighted by the rel-
evant keywords are: SETS, DATA. In the SETS sec-
tion types of simple or complex objects, and their
mutual relationships are defined. DATA section al-
lows initiating or assigning values to individual pa-
rameters of the model.

Implementation of the optimization model

The implementation of the optimization model to
solve problem under consideration is given in Fig. 2.
The model is constructed for time functions describ-
ing production units in form γr(vr) = AvB

r . The ex-
ample of the data file is presented in Fig. 3. The
file presents simple network consisting of two suppli-
ers, two production units, and two product receivers.
It is easy to see, that implementation of the model
including the load and presentation of the data is
very concise. For better orientation in model defin-
ition file as well as in data file, some comments are
included.
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Fig. 2. Optimization model described in Lingo program-
ming language.

Fig. 3. Example of the data structure in the input data
file to Lingo.

The solver is mainly used to solve convex opti-
mization problem. For non-convex models, solver re-

turns one of the local minima. The solver’s output is
determined by the initial conditions.

Algorithms solving

the non-convex version

of the problem

For non-convex optimization models the follow-
ing algorithms have been developed:

• Evolution algorithm,
• Heuristic algorithm ,
• Scatter search algorithm.

The first algorithm is an implementation of a genet-
ic algorithm with individual coded by real numbers
and representing the allocation of the raw material to
production units. To obtain the value of the fit func-
tion, two transportation problems have to be solved.
The algorithm has been described in details in [26]
and [27].

The second algorithm is based on the approxi-
mate algorithm developed for convex models and de-
scribed in [26] and [28]. It has been extended to cope
with non-convex models. The modified algorithm has
been presented in [29]. It main idea is to change
allocation of the raw material to production units
in a way that brings the improvement of the quali-
ty expressed by the total cost function. Likewise it
was done with evolutionary algorithm, to obtain the
value of the total cost, two transportation problems
have to be solved each time, new allocation values
are examined. The size of change in the allocation
values is not constant which gives the possibility to
change search areas of the local minima. The compar-
ison of those two algorithms presented in [29] show,
that they give very similar results, but the heuristic
algorithm is faster.

The third algorithm developed is the implemen-
tation of the scatter search algorithm. The scatter
search provides the new allocation of the raw mate-
rial being the basis for the initial conditions for the
Lingo solver (start points). In fact, the algorithm
works on the vector describing the amounts of the
product manufactured by the production units, while
the sum of its elements is constant. The linear com-
bination of the values in this vector produce new ini-
tial conditions. This algorithm combines the power
of Lingo solver, and the power of heuristic algorithm
which is scatter search.

Of course, presented algorithms dealing with non-
convex models, do not guarantee finding the global
optimum. However, most of them find good solutions
in rather short time.

Volume 3 • Number 3 • September 2012 7

Authenticated | 89.72.181.236
Download Date | 11/18/12 8:25 PM



Management and Production Engineering Review

To integrate solvers developed by Lindo systems
with C++ programs, we used Lindo API product
that has the same solvers as Lingo.

For a special case of the supply network consist-
ing of only one, or two production units, exact solu-
tion algorithms have been developed and described
in details in [30].

The idea of the computer decision

support system

The algorithms described can be integrated in
one computer system treated as a decision support
tool for managers or logistic providers. The system
choose for the user, in a transparent way, the best
solution algorithm to be executed. It takes into ac-
count the preferences of the user of which heuristic
algorithm he prefer –Evolutionary, Heuristic, or Scat-
ter Search. The decision process made by the system
is described in Fig. 4.

Fig. 4. Structure of the decision support system.

Numerical Examples

To show the main possibilities given by the de-
veloped algorithms and decision support system, we
consider a network consisting of two suppliers, four
production units and three product receivers. In the
following numerical examples, the models of the pro-
duction units and production cost coefficient π are to
be changed. At first, all models are convex functions
in the form γr(vr) = αvβ

r where β ≥ 1 and α, β ∈ ℜ+,
then we change model of a few production units in
a way that 0 < β < 1. This modification change
the objective function from convex to non-convex.

To handle the non-convex case of the problem, the
Scatter Search was chosen as the preferable heuristic
algorithm. For each example we were changing the
value of π to see the sensitivity of the solution to
this parameter, which describes how much produc-
tion cost depends on overall production time. The
fixed values of the supply network parameters are as
follows: I=2, R=4, K=3, w1=100, w2=100, v1=20,
v2=20, v3=60, c′1,1=31, c′1,2=31, c′1,3=29, c′1,4=30,
c′2,1=27, c

′

2,2=29, c
′

2,3=28, c
′

2,4=27, c1,1=28, c1,2=26,
c1,3=26, c2,1=33, c2,2=28, c2,3=31, c3,1=36, c3,2=32,
c3,3=26, c4,1=35, c4,2=26, c4,3=29, e1=0.5, e2=0.6,

Table 3

Network parameters changed in the experiments.

Parameter
Values of the parameters in four experiments

Exp. 1 Exp. 2 Exp.3 Exp. 4

β1 3 0.5

β2 3 0.6

β3 2 2

β4 2 2

π 0.004 0.006 8.2 8.3

Table 4

Results of the experiments.

Variable
Values of the variables in four experiments.

Exp. 1 Exp. 2 Exp.3 Exp. 4

Time [s] < 1 < 1 3 3

Obj. value 8745.90 8911.25 8462.82 8478.06

v1 34.65 33.61 0.00 158.42

v2 30.27 29.36 183.33 34.65

v3 0.00 9.87 0.00 0.00

v4 129.02 123.25 0.00 0.00

x′

1,1 0.00 0.00 0.00 58.42

x′

1,2 30.27 29.36 83.33 34.65

x′

1,3 0.00 9.87 0.00 0.00

x′

1,4 63.67 56.87 0.00 0.00

x′

2,1 34.65 33.61 0.00 100.00

x′

2,2 0.00 0.00 100.00 0.00

x′

2,3 0.00 0.00 0.00 0.00

x′

2,4 65.35 66.39 0.00 0.00

x1,1 17.33 2.38 20.00 20.00

x1,2 0.00 0.00 0.00 0.00

x1,3 0.00 14.43 30.00 59.21

x2,1 2.67 17.62 0.00 0.00

x2,2 15.49 0.00 20.00 20.00

x2,3 0.00 0.00 30.00 0.79

x3,1 0.00 0.00 0.00 0.00

x3,2 0.00 0.00 0.00 0.00

x3,3 0.00 3.95 0.00 0.00

x4,1 0.00 0.00 0.00 0.00

x4,2 4.51 20.00 0.00 0.00

x4,3 60.00 41.63 0.00 0.00
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e3=0.4, e4=0.5, α1=2, α2=3, α3=4, α4=5. The pa-
rameters values that change are gathered in Table 3.
In the paper we present the results of four numerical
experiments. All of them are gathered in Table 4.
As an output data, we selected the computation

time used to obtain the solution, the value of the ob-
jective function in the minimum point, transporta-
tion plans of the raw material as well as the product,
and the allocation of the raw material to production
units.
We omit the units in the example because they do

not have significant importance, and in fact depend
from the real model and the currency used the coun-
try, or by logistic provider. In this particular case, we
can assume, that production time is expressed in sec-
onds cost in dollars, and amounts of the raw material
as well as product in tons.

Corollaries

The sensitiveness of the solution depends on co-
efficient π. In some cases the change in the value of
π may cause the need of opening or closing one or
more production units from use. The manager have
to take the final decision of the data execution, or
of changing the input data. It is obvious, that it is
not advisable to engage production unit into pro-
duction process, if it is not planned to process on
that unit enough amount of the raw material to cov-
er all the costs and effort connected with running the
unit. The benefit from including additional produc-
tion unit into production process can be calculated
as a difference between solution that takes this unit
into account, and solution, that does not.
As it can be observed, little change in the values

of the coefficient π does not change a lot the total
cost, but can be the reason to take by the decision
maker some strategic steps, like e.g. closing a factory.
The change in the production unit model has a great
impact for the solution, especially when coefficient π
has greater value.
In the paper we present only a part of the re-

search that can be done using developed algorithms.
The most information gives the solution obtained by
Lingo solver for convex, especially linear cases of the
problem considered. For non-convex cases, we can
achieve similar information, but concerning only the
local minimum.

Conclusions

The paper concerns the optimization problem
of joint allocation and transportation in a special
case supply networks consisting of suppliers of the
raw material, production units and receivers of the

product. The supply networks under consideration
are connected with the processing of fast perish-
ing goods, like vegetables and fruits. The problem
of joint allocation and transportation has been pre-
sented and solution algorithms described. The inte-
gration of the algorithms developed has been pro-
posed. The special attention was put on the use
of the commercial solver Lingo, developed by Lin-
do Systems inc. It was mainly used to model and
solve convex cases of the problem. For non-convex
cases, three heuristic algorithms have been present-
ed. Some properties of the solution algorithms have
been shown by numerical examples.
The further work will include the research deal-

ing with parametric uncertainty in supply network
under consideration. The results obtained from the
numerical results, indicate, that the sensitiveness for
expert’s knowledge might be significant.
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