PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Conceptual framework of bioethanol production from lignocellulose for agricultural profitability

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Among currently developed biofuel and green-power technologies, technological development of lignocellulose biomass-based production of ethanol will be particularly important in a short time perspective as those specific activities constitute an intermediary stage in the process of developing integrated processes of biomass conversion in the route to the universal energy carrier - hydrogen or electricity. Agricultural biorefinery or agri-refinery which converts agricultural biomass to a wide spectrum of biofuels and bioproducts is considered as the key element of the future economy. The biorefinery which produces biofuels and generates bioenergy will constitute the so called agri-energy complex - a local power unit implemented in the system of dispersed energy generation. It is worth noticing that agri-refinery will integrate three fundamental drivers of sustainable development of rural areas - bioeconomics, environment and society. This paper aims at elaborating the conceptual framework of the agri-refinery in the aspect of conversion of agricultural lignocellulosic biomass into bioethanol and other bioproducts as well as the future economy and sustainable development.
Rocznik
Strony
15--27
Opis fizyczny
Bibliogr. 77 poz., rys., tab.
Twórcy
autor
autor
Bibliografia
  • Alcaide, L.J., J.C.G. Dominguez, I.P. Ot. 2003. Influence of cooking variables in the organosolv pulping of wheat straw using mixtures of ethanol, acetone, and water. TAPPI Journal 2: 27-31.
  • Bonini, C., M. D’Auria, P. Di Maggio, R. Ferri. 2008. Characterization and degradation of lignin from steam explosion of pine and corn stalk of lignin: the role of superoxide ion and ozone. Industrial Crops and Products 27: 182-188.
  • Berndes, G., M. Hoogwijk, R. van den Broek. 2003. The contribution of biomass in the future global energy system: A review of 17 studies. Biomass and Bioenergy 25: 1-28.
  • Blaschek, H.P., T.C. Ezeji. 2007. Corn-Based Ethanol in Illinois and the U.S.: A Report from the Department of Agricultural and Consumer Economics, University of Illinois. Chapter 7, Science of Alternative Feedstock, pp. 112-128.
  • Bothast, R.J., B.C. Saha. 1997. Ethanol production from agricultural biomass substrates. Advances and Applied Microbiology 44: 261-286.
  • Campbell, C.J., J.H. Laherrere. 1998. The end of cheap oil. Scientific American 278: 78-83.
  • Clark, J.H., F.E.I. Deswarte. 2008. Introduction to Chemicals from Biomass. 184 p. A John Wiley and Sons, Ltd, Publication.
  • Cookson, C. 2007. Biofuel crops to transform UK landscape. Financial Times.
  • Council of the European Union. 2007. Brussels European council 8/9 march 2007 presidency conclusion. 7224/1/07, REV 1. 25 p.
  • Dale, B.E. 2007. Thinking clearly about biofuels: ending the irrelevant net energy debate and developing better performance metrics for alternative fuels. Biofuels Bioproducts and Biorefining 1: 14-17.
  • Dien, B.S., M.A. Cotta, T.W. Jeffries. 2003. Bacteria engineered for fuel ethanol production current status. Applied Microbiology and Biotechnology 63: 258-266.
  • Doolittle, J.J., L. DoKyoung, P. Jeranyama, V. Owens, A. Boe. 2006. Composition of lignocellulosic feedstock for biofuels and bioproducts. ASA-SSSA-SSSA International Meetings, Indianapolis, USA.
  • EREC (European Renewable Energy Council). 2004. Renewable Energy Policy Review. 15 p.
  • European Commission. 2006. EUR 22397 - The state and prospects of European energy research. Comparison of commission, member and non-member states R&D portfolios. 121p.
  • European Commission. 2007. AGRI G-2/WM D. Impact Assessment of the Renewable Energy Roadmap. Directorate-General for Agriculture and Rural Development. Directorate G. Economic analysis, perspectives and evaluations. G.2. Economic analysis of EU agriculture. 10 p.
  • FAO (Food and Agriculture Organization of the United Nations). 2008. FAOSTAT. http://faostat.fao.org (24 March 2008).
  • Farrell, A.E., R.J. Plevin, B.T. Turner, A.D. Jones, M. O'Hare, D.M. Kammen. 2006. Ethanol can contribute to energy and environmental goals. Science 311: 506-508.
  • Ferreira, V., M. de Oliveira Faber, S. da Silva Mesquita, Jr., N. Pereira. 2010. Simultaneous saccharification and fermentation process of different cellulosic substrates using a recombinant Saccharomyces cerevisiae harbouring the β-glucosidase gene. Electronic Journal of Biotechnology 13: 1-7.
  • Goettemoeller, J., A. Goettemoeller. 2007. Sustainable Ethanol: Biofuels, Biorefineries, Cellulosic Biomass, Flex-FuelVehicles, and Sustainable Farming for Energy Independence. 196 p. Prairie Oak Publishing, Maryville, Missouri.
  • Gołaszewski, J., W. Budzyński, K. Jankowski. 2008a. Production of liquid biofuels - energy efficiency. International Conference “Oils and Fuels for Sustainable Development” - AUZO 2008, Gdańsk.
  • Gołaszewski, J. 2009a. Renewable energy sources and environmental enhancement and protection. III Nationwide Scientific Conference in Poland, Environmental Protection and Enhancement. “Natural, Technical and Social-and-Economic Conditionalities”. Olsztyn, Poland.
  • Gołaszewski, J. 2009b. Biorafinerie/technologie bioenergetyczne - stan obecny i perspektywy rozwoju [Biorefineries/bioenergentic technologies - present state and developmental perspectives]. Proceedings of International Conference “Renewable Energy Technologies and Polygeneration”: 20-33. Poznań, Poland. In Polish.
  • Gołaszewski, J. 2009c. Renewables and environmental implications. Environmental Biotechnology 5: 11-24.
  • Gołaszewski, J., W. Budzyński, K. Jankowski. 2008b. Seeds as the source of biofuels. Proceedings of the 9th ISSS Conference on Seed Biology, Olsztyn, Poland: 141-148.
  • Gołaszewski, J., W. Bednarski, M.K. Łuczyński, M. Stolarski, M. Góra, M. Lewandowska, E. Olba-Zięty. 2011. Current research on lignocellulosic biorefinery in Poland. 3rd Nordic Wood Biorefinery Conference, Proceeedings: 229-231. Stokholm, Sweden.
  • Hahn-Hägerdal, B., M. Galbe, M.F. Gorwa-Grauslund, G. Lidén, G. Zacchi. 2006. Bioethanol - the fuel of tomorrow from the residues of today. Trends in Biotechnology 24: 549-56.
  • Hamelinck, C.N., A.P.C. Faaij. 2006. Outlook for advanced biofuels. Energy Policy 34: 3268-3283.
  • Hari Krishna, S., G.V. Chowdary. 2000. Optimization of simultaneous saccharification and fermentation for the production of ethanol from lignocellulosic biomass. Journal of Agricultural and Food Chemistry 48: 1971-1976.
  • Harrow, G. 2008. Ethanol production, distribution, and use. Discussions and key issues. National Renewable Energy Laboratory. http://www.nrel.gov.
  • Hill, J. 2007. Environmental costs and benefits of transportation biofuel production from food- and lignocellulose-based energy crops. A review. Agronomy for Sustainable Development 27: 1-12.
  • Himmel, M.E., S.Y. Ding, D.K. Johnson. 2007. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315: 804-807. http://www.sciencemag.org/content/315/5813/804.full - aff-1.
  • IEA (International Energy Agency). 2004. Energy Statistics Manual. Paris, France. 196 p.
  • IEA (International Energy Agency). 2008. Energy Technology Perspectives 2008. Scenarios and Strategies to 2050. Paris, France. 12 p.
  • IEA (International Energy Agency). 2009. World Energy Outlook 2009. Paris, France. 15 p.
  • Ingram, L.O., P.F. Gomez, X. Lai, M. Moniruzzaman, B.E. Wood, L.P. Yomano, S.W. York. 1998. Metabolic engineering of bacteria for ethanol production. Biotechnology and Bioengeenering 58: 204-214.
  • Kamm, B., M. Kamm. 2004. Principles of biorefineries. Applied Microbiology and Biotechnology 4: 137-145.
  • Kamm, B., P.R. Gruber, M. Kamm. 2006. Biorefineries - industrial processes and products. Status quo and future directions. 497 p. Wiley-VCH VerlagGmBH& Co. KGaA.
  • Kamm, B., P. Schönicke, M. Kamm. 2009. Biorefining of green biomass – technical and energetic considerations. Wiley-VCH VerlagGmBH& Co. KGaA, CLEAN 37: 27-30.
  • Kovarik, B., H. Ford, F. Charles. 1998. Kettering and the fuel of the future. Automotive History Review 32: 7-27.
  • Kumar, A. 2009. Biofuels production and future perspective. http://www.science20.com/humboldt_fellow_and_science/blog/biofuels_production_and_future_perspective-62249.
  • Laufenberg, G., B. Kunz, M. Nystroem. 2003. Transformation of vegetable waste into value added products: (A) the upgrading concept; (B) practical implementations. Bioresource Technology 87: 167-198.
  • Licht, F.O. 2009. World ethanol & biofuel report. U.K. Agra Informa Ltd. http://www.agra-net.com.
  • Lin, Y., S. Tanaka. 2006. Ethanol fermentation from biomass resources: current state and prospects. Applied Microbiology and Biotechnology 69: 627-642.
  • Macqueen, D., S. Korhaliller. 2011. Bundles of energy: The case for renewable biomass energy. Natural Resource Issues No. 24. 88 p. IIED, London.
  • Miyamoto, K. 1997. Renewable biological systems for alternative sustainable energy production. 128p. FAO Agricultural Services Bulletin.
  • Nonhebel, S. 2005. Renewable energy and food supply: will there be enough land? Renewable & Sustainable Energy Reviews 9: 191-201.
  • Obama, B., J. Biden. 2012. Promoting a healthy environment. http://www.barackobama.com/.
  • Ogier, J.C., D. Ballerini, J.P. Leygue, L. Rigal, J. Pourquie. 1999. Ethanol production from lignocellulosic biomass. Oil & Gas Science and Technology 54: 67-94.
  • Olofsson, K., B. Palmqvist, G. Lidén. 2010. Improving simultaneous saccharification and co-fermentation of pretreated wheat straw using both enzyme and substrate feeding. Biotechnology for Biofuels 3: 17.
  • Patel, M., M. Crank, V. Dornburg, B. Hermann, L. Roes, B. Husing, L. Overbeek, F. Terragni, E. Recchia. 2006. Medium and longterm opportunities and risks of the biotechnological production of bulk chemicals from renewable resources - the potential of white biotechnology. 452 p. The BREW project. Final Report.
  • Perlack, R.D., L.L. Wright, A.F. Turhollow, R.L. Graham, B.J. Stokes, D.C. Erbach. 2008. Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. 78 p. Oak Ridge National Laboratory.
  • Reddy, C.A., T.M. D’Souza. 1998. Application of PCR in studying lignocellulose degradation by basidiomycetes. In: Application of PCR in Mycology (ed. P.D. Bridge, D.K. Arora, C.A. Reddy, R.P. Elander), pp. 205-242. Oxon; New York, NY: CAB International.
  • RFA. 2008. The Gallagher Review of the indirect effects of biofuels production. 91 p. UK: The Renewable Fuels Agency.
  • Rowe, R.L., N.R. Street, G. Taylor. 2009. Identifying potential environmental impacts of large-scale deployment of dedicated bioenergy crops in the UK. Renewable and Sustainable Energy Reviews 13: 271-290.
  • Saha, B.C. 2003. Hemicellulose bioconversion. Journal of Industrial Microbiology and Biotechnology 30: 279-291.
  • Saha, B. C., J. Woodward. 1997. Fuels and chemicals from biomass. 365 p. American Chemical Society, Washington, DC.
  • Sanders, J. 2009. Sustainability and climate protection, the role of bio fuels and biorefineries in Europe. Presentation by J. Sanders, Professor, BioMotion congress. Agritechnica Hannover.
  • http://www.biomotion-tour.eu/news/sustainability-and-climateprotection-the-role-of-bio-fuels-and-biorefineries-in-europejohan-sanders (13 November 2009).
  • Sannigrahi, P., A.J. Ragauskas, G.A. Tuskan. 2010. Poplar as a feedstock for biofuels: A review of compositional characteristics. Biofuels Bioproducts & Biorefining 4: 209-226.
  • Sheehan, J., A. Aden, K. Paustian, K. Killian, J. Brenner, M. Walsh, R. Nelson. 2004. Energy and environmental aspects of using corn stover for fuel ethanol. Journal of Industrial Ecology 7: 117-46.
  • Sjöström, E. 1993. Wood Chemistry. Fundamentals and Applications. Second Edition San Diego. 302 p. Academic Press.
  • Sluiter, J.B., R.O. Ruiz, C.J. Scarlata, A.D. Sluiter, D.W. Templeton. 2010. Compositional analysis of lignocellulosic feedstocks. 1. Review and description of methods. Journal of Agricultural Food Chemistry 58: 9043-9053.
  • Stolarski, M., J. Gołaszewski, M. Krzyżaniak, M.K. Łuczyński. 2009. Non-forest lignocellulosic biomass as the main feedstock in ethanol biorefinery. 2nd Nordic Wood Biorefinery Conference, Proceeedings, 1: 13-18. Helsinki, Finland.
  • Szczukowski, S., J. Tworkowski, A. Klasa, M. Stolarski. 2002. Productivity and chemical composition of wood tissues of short rotation willow coppice cultivated on arable land. Rostlinna Vyroba 48: 413-417.
  • Thomsen, M.H., D. Bech, P. Kiel. 2004. Manufacturing of stabilised brown juice for L-lysine production - from university lab scale over pilot scale to industrial production. Chemical and Biochemical Engineering Quarterly 18: 37-46.
  • Troszkiewicz, Cz., R. Bogoczek. 1954. Sposób hydrolizy drewna lub innych materiałów zawierających celulozę [Method of hydrolysis of wood or other materials containing cellulose]. Patent No. 37643. In Polish.
  • UNEP. 2008. Global Green New Deal - Environmentally-Focused Investment Historic Opportunity for 21st Century Prosperity and Job Generation. 104 p.
  • US Department of Energy. 2004. Performance and Accountability Report: Fiscal Year 2004. 404 p.oe pac.
  • van Vliet, O.P.R., A.P.C. Faaij, W.C. Turkenburg. 2009. Fischer-Tropsch diesel production in a well-to-wheel perspective: A carbon, energy flow and cost analysis. Energy Conversion and Management 50: 855-876.
  • Weih, M. 2008. Short rotation forestry (SRF) on agricultural land and its possibilities for sustainable energy supply. Nordic Council of Ministers, Copenhagen. TemaNord, 543: 1-66.
  • Willke, T., K.D. Vorlop. 2004. Industrial bioconversion of renewable resources as an alternative to conventional chemistry. Applied Microbiology and Biotechnology 66: 131-142.
  • World Economic Outlook 2007: Globalization and Inequality (EPub). International Monetary Fund, 2007. 274 p.
  • Wright, M., R.C. Brown. 2007. Comparative economics of biorefineries based on the biochemical and thermochemical platform. Biofuels Bioproduct Biorefining 1: 49-56.
  • Wu, Z., Y.Y. Lee. 1998. Nonisothermal simultaneous saccharification and fermentation for direct conversion of lignocellulosic biomass to ethanol. Applied Biochemistry and Biotechnology 70-72: 479-492.
  • Yu, Z.S., H.X. Zhang. 2004. Ethanol fermentation of acidhydrolyzed cellulosic pyrolysate with Saccharomyces cerevisiae. Bioresource Technology 93: 199-204.
  • Zhu, J.Y., X.J. Pan, G.S. Wang, R. Gleisner. 2009. Sulfite pretreatment (SPORL) for robust enzymatic saccharification of spruce and red pine. Bioresource Technology 100: 2411-2418.
  • Zhu, J.Y., X.J. Pan. 2010. Woody biomass pretreatment for cellulosic ethanol production: Technology and energy consumption evaluation. Bioresource Technology 101: 4992-5002.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAR0-0067-0022
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.