PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Model mechatronicznego systemu do wspomagania rehabilitacji ruchowej

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Model mechatronic system to support motor rehabilitation
Języki publikacji
PL
Abstrakty
PL
W rehabilitacji pacjentów z dysfunkcjami narządów ruchu coraz częściej są wykorzystywane urządzenia mechatroniczne. W artykule zaprezentowano koncepcję systemu mechatronicznego do wspomagania rehabilitacji ruchowej kończyn dolnych. W systemie przewidziano zastosowanie serwonapędów, enkoderów i czujników siły. Koncepcja programu sterującego zakłada realizację ćwiczeń w opcji pasywnej lub aktywnej. Ważnymi walorami rozwiązania będą personalizacja programu ćwiczeń i jego parametrów do potrzeb pacjenta oraz analiza efektów procesu terapeutycznego. Interfejs Internet/Intranet umożliwi zastosowanie funkcji telemonitoringu, a także zdalny dostęp do bazy danych.
EN
Mechatronic systems are increasingly used in motor rehabilitation therapy of patients with motion disability. This paper presents a concept of the mechatronic system to the support motor rehabilitation of lower limbs. The system uses servomotors, encoders, and force sensors. The concept of system software includes exercise in a passive motion mode and an active motion mode. Personalisation of the exercise programme and parameters suitable for patient's needs as well as an analysis of therapy progress are significant advantages of this solution. The Internet/Intranet connection will enable the telemonitoring of the system and remote access to the data base.
Rocznik
Tom
Strony
67--78
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
autor
autor
autor
Bibliografia
  • 1. Cooper R.A., Dicianno B.E., Brewer B., LoPresti E., Ding D., Simpson R., Grindle G. and Wang H.: Perspective on intelligent devices and environments in medical rehabilitation. Medical Engineering & Physics 30 (2008), p.1387-1398.
  • 2. Krebs H.I.: Robot-Mediated Movement Therapy: a Tool for Training and Evaluation. European Symposium Technical Aids for Rehabilitation - TAR 2007, Technical University of Berlin.
  • 3. Sunderland A., Tinson D.J., Bradley E.L., Fletcher D., Langton H.R. and Wade D.T.: Enhanced physical therapy improves recovery of arm function after stroke, A randomized control trial. Journal of Neurology, Neurosurgery & Psychiatry Vol. 55 (1992), p. 530-535.
  • 4. Aisen M.L., Krebs H.I., McDowell F., Hogan N. and Volpe B.T.: The effect of robot assisted therapy and rehabilitative training on motor recovery following stroke. Archives of Neurology, vol. 54, 1997, p. 443-446.
  • 5. Dromerick A.W., Lum P.S., and Hidler J.: Activity-Based Therapies. The Journal of the American Society for Experimental NeuroTherapeutics Vol. 3, No. 4 (2006), p. 428-438.
  • 6. Johnson M.J.: Recent trends in robot-assisted therapy environments to improve real-life functional performance after stroke. Journal of Neuro-Engineering and Rehabilitation 2006, 3:29.
  • 7. Dong S., Lu K.-Q., Sun J. Q. and Rudolph K.: Rehabilitation device with variable resistance and intelligent control. Medical Engineering & Physics 27 (2005), p. 249-255.
  • 8. Erol D., Mallapragada V., Sarkar N., Uswatte G. and Taub E.: A New Control Approach to Robot Assisted Rehabilitation. Proceedings of the IEEE 9th International Conference on Rehabilitation Robotics (2005), p. 323-328.
  • 9. Hogan N., Krebs H.I., J., P. Srikrishna, and Sharon A.: MIT-MANUS: A workstation Charnnarong for manual therapy and training. Proc. Int. Workshop Robot Human Commun., (1992), p. 161-165.
  • 10. Roy A., Krebs H.I., Williams D.J., Bever Ch.T., Forrester L.W., Macko R.M. and Hogan N.: Robot-Aided Neurorehabilitation: A Novel Robot for Ankle Rehabilitation. IEEE Transactions on Robotics Vol. 25, Issue 3, (2009), p. 569-582.
  • 11. Hesse S., Schmidt H. and Werner C.: Machines to support motor rehabilitation after stroke: 10 years of experience in Berlin. Journal of Rehabilitation Research&Development Vol. 43, number 1 (2006), p. 671-678.
  • 12. Ho H.-J., Chen T.-Ch.: Motorized CPM/CAM physiotherapy device with sliding-mode Fuzzy Neural Network control loop. Computer Methods and Programs in Biomedicine 96 (2009), p. 96-107.
  • 13. Lin C.-C. K., Ju M.-S., Chen S.-M. and Pan B.-W.: A Specialized Robot for Ankle Rehabilitation and Evaluation. Journal of Medical and Biological Engineering, 28(2) (2008), p. 79-86.
  • 14. Hesse S., Schulte-Tigges G., Konrad M., Bardeleben A. and Werner C.: Robot-Assisted Arm Trainer for the Passive and Active Practice of Bilateral Forearm and Wrist Movements in Hemiparetic Subjects. Archives of Physical Medicine and Rehabilitation Vol 84 (2003), p. 915-920.
  • 15. Schmidt H., Werner C., Bernhardt R., Hesse S. and Krüger J.: Machines and robots to support motor rehabilitation after stroke: 10 years of experience in Berlin. European Symposium Technical Aids for Rehabilitation - TAR 2007, Technical University of Berlin.
  • 16. Bradley D., Acosta-Marquez C., Hawley M., Brownsell S., Enderby P. and Mawson S.: NeXOS - The design, development and evaluation of a rehabilitation system for the lower limbs. Mechatronics 19 (2009), p. 247-257.
  • 17. Winstein C., Wing A. M. and Whitall J.: Motor control and learning principles for rehabilitation of upper limb movements after brain injury. In: J. Grafman and I.H. Robertson (Eds), Handbook of Neuropsychology, Vol. 9, (2003), p. 77-137.
  • 18. Hidler J., Wisman W. and Neckel N.: Kinematic trajectories while walking within the Lokomat robotic gait-orthosis. Clinical Biomechanics 23 (2008), p. 1251-1259.
  • 19. Riener R.: Multimodal patient-cooperative rehabilitation robotics. World Congress of Biomechanics, Munich, Journal of Biomechanics, vol. 39, suppl. 1, p. S210 (2006).
  • 20. Tsetserukou D., Sato K. and Tachi S.: ExoInterfaces: novel exosceleton haptic interfaces for virtual reality, augmented sport and rehabilitation, in Proc. the First ACM International Conference Augmented Human, (2010), p. 1-6.
  • 21. http://www.sensable.com/products-haptic-devices.htm
  • 22. http://www.caip.rutgers.edu/vrlab/projects/ankle ankle.html
  • 23. Sveistrup H.: Motor rehabilitation using virtual reality. Journal of Neuro-Engineering and Rehabilitation 2004, 1:10.
  • 24. Zampolini M. at al.: Tele-rehabilitation: present and future. Annali dell'Istituto Superiore di Sanità Vol. 44, No. 2 (2008), p. 125-134.
  • 25. Carignan C.R., Krebs H.I.: Telerehabilitation robotics: Bright lights, big future? Journal of Rehabilitation Research & Development Vol. 43, Number 5 (2006), p. 695-710.
  • 26. Mazzoleni S., Dario P., Carrozza M.C. and Guglielmelli E.: Application of robotic and mechatronic systems to neurorehabilitation, in Mechatronic Systems Applications, edited by A. Milella, D. Di Paola and G. Mechatronic Systems Applications INTECH 2010.
  • 27. Hu H.: Research trends in Medical & Rehabilitation Robotics. IEEE ICIA 2010 Conference Workshop Talk II, Harbin, China (2010).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAR0-0067-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.