PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Methods of knowledge representation and processing in control of intelligent tutoring systems

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper is dedicated to methods of increasing the intelligence level of interactive tutoring systems. New logical methods of knowledge representation and processing with application in intelligent control of tutoring systems are considered. The proposed methods are useful in problems which require coupling logics and heuristics as well as in problems with incomplete information and have other specifics in comparison with known intelligent components of computer systems. The architecture of a concrete intelligent tutoring system "Volga" is considered. The methods of automation of course tasks solving and action planning as well as techniques of constructing student's model are proposed.
Twórcy
  • V.A. Trapeznikov Institute of Control Sciences, 65 Profsoyuznaya St., 17997 Moscow, Russia, phone: +74 95 334 8910, snv@ipu.ru
Bibliografia
  • [1] Evens M., Brandle S., Chang R., Freedman R., Glass M., Lee Y.H., Shim L.S., Woo Woo C., Zhang Y., Zhou Y., Michael J.A., Rovick A.A., CIRCSIM-Tutor: An Intelligent Tutoring System Using Natural Language Dialogue, 12th Midwest AI and Cognitive Science Conference, Oxford OH, pp. 16-23, 2001.
  • [2] Graesser A., Lu S., .Jackson G.T., Autotutor: A Tutor with Dialogue in Natural Language, Behaviour Research Methods, Instruments &Computers, 36, 2, 180-192, 2004.
  • [3] Melis E., Siekmann J., ActiveMath: An Intelligent Tutoring System for Mathematics, Artificial Intelligence and Soft Computing - ICAISC 2004, Springer Berlin Heidelberg, 3070, 91-101, 2004.
  • [4] Mott B.W., Lester J.C., Narrative-Centered Tutorial Planning for Inquiry-Based Learning Environments, Intelligent Tutoring Systems, Springer Berlin Heidelberg, 4053, 675-684, 2006.
  • [5] Johnson V.L., Valente A., Tactical Language and Culture Training Systems: Using Artificial Intelligence to Teach Foreign Languages and Cultures, Proceedings of the 20th national conference on Innovative applications of artificial intelligence, Chicago: AAAI Press. 3, 1632-1639, 2008.
  • [6] Makatchev M., Jordan P.W., VanLehn K., Abductive Theorem Proving for Analyzing Student Explanations to Guide FeedBack in Intelligent Tutoring Systems, Journal of Automated Reasoning, 32, 3, 187-196, 2004.
  • [7] Gertner A., VanLehn K., Wintersgill M.C., Treacy D.J., Shelby R.N., Schulze K.G., Andes: An Intelligent Tutor for Classical Physics, The Journal of electronic publishing, 6, 1, 2000, http://quod.lib.umich.edu/cgi/t/text/text-idx?c=jep;view=text;rgn=main;idno=3336451.0006.110.
  • [8] Koedinger K.R. Corbett A.T., Cognitive Tutors: Technology Bringing Learning Sciences to the Classroom, The Cambridge handbook of the learning sciences, NY: Cambridge University Press, pp. 137, 2006.
  • [9] Vassilyev S.N., Degtyarev G.L., Kozlov V.V., Malivanov N.N., Sabitov S.R., Sabitov R.A., Sirazetdinov R.D., Adaptive Approach to Developing Advanced Distributed E-learning Management System for Manufacturing, Preprints of the 13th IFAC Symposium on Information Control Problems in Manufacturing, (FR-C86). Moscow, pp. 2198-2203, 2009 (in Russian).
  • [10] Vassilyev S.N., An Intelligent Tutoring System, Proceedings of the 10th International Scientific and Technological Conference, Taganrog, TTI YuFU Publishing House, p. 294, 2009 (in Russian).
  • [11] Smirnova N.V., Tracing Intelligent Tutoring Systems: State and Perspective View, Intellectual Control Systems, S.N Vassilyev, Ed. Moscow: Mashinostroyeniye, 2009 (in Russian).
  • [12] Kildyayeva L.G., A Differentiated Approach to Teaching Geometry to Basic School Students, Sc. Pedagogics thesis, Saransk, Mordovian Ye, V. Yevsevyev, State Pedagogical Insititute, 2006.
  • [13] Woolf B.P., Building Intelligent Interactive Tutors: Student-Centered Strategies for Revolutionizing Elearning, USA, Morgan Kauffman, p. 467, 2008.
  • [14] Kearsley G., Explorations in Learning & Instruction: The Theory Into Practice Database, 2009, URL: http://tip.psychology.org/
  • [15] Reye J., Student Modelling Based on Belief Networks, International, Journal of Artificial Intelligence in Education, 14, 63-96, 2004.
  • [16] Russel S., Norvig P., Artificial Intelligence. An Advanced Approach 2-nd edition, Translated from the English - Moscow: Williams Publishing House, pp. 1408, 2006.
  • [17] Nepejvoda N.N., Nepejvoda L.K., The Role of Logics in Teaching, Modern Logics: the Issues of Theory, History and Application in Science, SpbGU, Saint-Petersburg, pp. 92–94, 2004 (in Russian).
  • [18] Soldato T., Boulay B. du, Formalization and Implementation of Motivational Tactics in Tutoring Systems, Journal of Artificial Intelligence in Education, 6, 4, 337-378, 1995.
  • [19] Baker R., Corbett A.T., Koedinger K.R., Detecting Student Misuse of Intelligent Tutoring Systems, Lecture Notes in Computer Science, 3220, pp. 54-76, 2004.
  • [20] Robinson J.A., On Automatic Deduction, Rice University Studies, 50, 69-89, 1964.
  • [21] Robinson J.A., A Machine-oriented Logic Based on the Resolution Principle, J. ACM, 12, 23-41, 1965.
  • [22] Robinson J.A., The Generalized Resolution Principle. Machine Intelligence, D. Michie (Ed.), 3, NY, American Elsevier, pp. 77-94, 1968.
  • [23] Vassilyev S.N., Zherlov A.K., Fedosov Ye.A, Fedunov B.Ye., Intelligent Control of Dynamical Systems, Moscow: Physico-Mathematical Literature Publishers, pp. 352, 2000 (in Russian).
  • [24] Sukonnova A.A., Automation of Solving a Certain Class of Computing Problems, Proceedings of the 10th International Scientific and Technological Conference. Taganrog: Taganrog TTI YuFU Publishng House, pp. 294, 2009 (in Russian).
  • [25] Sukonnova A.A., Software for Testing Student-Developed Computer Programs, Today’s Technologies and Materials: a Key to Revival of Russian Aircraft Building Industry. Collected papers of an International Research and Engineering Conference, Kazan: Vertolyot (Helicopter) Publishers, pp. 480, 2010 (in Russian).
  • [26] Takeuti G., Proof Theory, Ĕoscow: Mir Publishers, 1978 (in Russian).
  • [27] Tyugu E.Kh., The Conceptual Programming, Moscow: Nauka, 1981 (in Russian).
  • [28] Tyugu E.Kh.,.Matskin M.B,. Penyam Ya. E, Eomoys P.V., Object-Oriented Language NUT, Applied Informatics, 2nd edition. Moscow: Finance and Statistics, 1986 (in Russian).
  • [29] Brusilovsky P., Pesin L., Adaptive Navigation Support in Educational Hypermedia: An Evaluation of the ISIS-Tutor, Journal of Computing and Information Technology, 6 (1), 27-38, 1998.
  • [30] Vassilyev S.N., Selyodkin A.P., Synthesis of a Preference Function in Multi-Criteria Decision Making Problems, USSR Academy of Sciences Papers, Control Engineering, 3, 186–190, 1980 (in Russian).
  • [31] Vassilyev S.N., Method to Synthesis of Conditions for Derivability of Horn and Other Formulae, Siberian Mathematical Journal, 38, 5, 1034-1046, 1997 (in Russian).
  • [32] Kakas A.C., Kowlaski R., Toni F., The Role of Abduction in Logic Programming, Handbook of Logic in Artificial Intelligence and Logic Programming, 5, D.M. Gabbay and others eds., Oxford University Press, 1998, pp. 235-324.
  • [33] Kowalski R.A., Computational Logic in an Object-Oriented World, Reasoning, Action and Interaction in AI Theories and Systems - Festschrift in Honor of Luigia Carlucci Aiello (Eds. O. Stock, M. Schaerf), Springer Verlag, 2006, LNAI.
  • [34] Mints G., Hoshi T., Logical Equations in Monadic Logic, Notes of Scientific Workshop POMI, 358, 251-270, 2008.
  • [35] McCarthy J., Parameterizing Models of Propositional Calculus Formulas, 2010 www.formal.stanford.edu/jmc/parameterize/parameterize.html.
  • [36] Kolmogoroff A.N., Zur Deutung der Intuitionistischen Logik, Math. Z., 35, 58-65, 1932.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAR0-0065-0070
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.