PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Identification methods based on associative search procedure

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In modern control systems, identification is an integral part of adaptive control where process models are adjusted using real-time operation data and control actions optimal with respect to some performance criterion are developed. A variety of identification methods based on mathematical statistics techniques have been developed. Algorithms optimal for certain classes of objects and external disturbances were categorized dependent on the available a priori information about the control object. The limits of approximating models development and application were outlined. Against this background, the paper presents novel associative search techniques enabling the development of a new dynamic object's model on each time step rather than plant approximation pertaining to time. The model is build using the data samples from process history (associations) developed at the learning phase. The new techniques employs the models of human individual's (process operator's, stock analyst's or trader's) behavior based on professional knowledge formalization. Application examples from oil refining and chemical industries, power engineering, and banking are adduced.
Twórcy
autor
  • V.A. Trapeznikov Institute of Control Sciences, 65 Profsoyuznaya St., 17997 Moscow, Russia, phone: +74 95 334-92-01, sung7@yandex.ru
Bibliografia
  • [1] Bellman R. Kalaba R., Dynamic Programming and Modern Control Theory, Academic Press, New York, N.Y., 1965.
  • [2] Bunich A., Lototsky V., Fast convergent identification algorithm for limited noise, Proc. of 15th IFAC World Congress, Barcelona, Spain, 2002.
  • [3] Goodwin G., Ramadge P., Caines P., Discrete time stochastic adaptive control, SIAM Journal on Control and Optimization, 19, 829-853, 1981.
  • [4] Juditsky A., Nazin A., On minimax approach to nonparametric adaptive control, Int. J. Adapt. Control & Signal Process, 15, 153-168, 2001.
  • [5] Ljung L., System identification. Theory for user, Prentice Hall, Upper Saddle River, N.J., 2nd edition, p. 609, 1999.
  • [6] Poznyak A.S., Kaddour N., Learning Automata and Stochastic Optimization, Springer Verlag, New York, 1997.
  • [7] Chen H.F., Recursive system identification and adaptive control by use of the modified least squares algorithm, SIAM J. Control and Optimization, 22, 5, 758-776, 1984.
  • [8] Ljung L., Perspectives on System Identification, Plenary on 17th IFAC World Congress, Seoul, Korea, 2008.
  • [9] Larichev O.I., Asanov A., Naryzhny Y., Strahov S., Expert System for the Diagnostics of Acute Drug Poisonings, Applications and Innovations in Intelligent Systems IX, Proc. of the 21 SGES International Conference on Knowledge Based Systems and Applied Artificial Intelligence. Cambridge, UK: Springer-Verlag, 159-168, 2001.
  • [10] Patel V.L., Ramoni M.F., Cognitive Models of Directional Inference in Expert Medical Reasoning in Feltovich P., Ford K., Hofman R. (Eds.) Expertise in Context: Human and Machine. AAAI Press, Menlo Parc, CA., 1997.
  • [11] Hunt E., Cognitive Science: Definition, Status and Questions, Annual Review of Psychology, 40, 603-629, 1989.
  • [12] Simon H.A., The Sciences of the Artificial (3rd ed.), The MIT Press, Cambridge, MA, 1997.
  • [13] Costa E.F., Tinos R., Oliveira V.A., Araujo A.F.R., Reinforcement learning schemes for control design, Proc. of American Control Conference, 4, 2414-2418, 1997.
  • [14] Gavrilov A.V., The model of associative memory of intelligent system, Preprints of the 6-th RussianKorean International Symposium on Science and Technology, 1, 174-177, 2002.
  • [15] Larichev O. Brown R., Numerical and verbal decision analysis: Comparison on practical cases, Journal of Multi-Criteria Decision Analysis, 9, 263-273, 2000.
  • [16] Chadeev V.M., Digital Identification of Nonlinear Dynamic Plants, Automation and Remote Control, 12, 85-93, 2004.
  • [17] Bakhtadze N., Lototsky V., Maximov E., Pavlov B., Associative search models in industrial systems, Proc. of IFAC workshop on intelligent manufacturing systems, 156-161, 2007.
  • [18] Bakhtadze N., Lototsky V., Valiakhmetov R. Associative search models in trading, Proc. of 17th IFAC World Congress, Seoul, Korea, 4280-4284, 2008.
  • [19] Bakhtadze N., Maximov E., Valiakhmetov R.E., Fuzzy soft sensors for chemical and oil refining processes, Proc. of 17 IFAC World Congress, Seul, Korea, 4246-4250, 2008.
  • [20] Takagi T., Sugeno, M., Fuzzy identification of systems and its applications to modeling and control, IEEE Trans. Systems Man Cybernetics, 15 (1), 116-132, 1985.
  • [21] Jain A.K., Murty M.N., Flynn P.J., Data clustering: a review, ACM Computing Surveys, 31 (3), 264-323, 1999.
  • [22] Pascual-Marqui R.D., Pascual-Montano A.D., Kochi K., Carazo J.M., Smoothly distributed fuzzy C-means: a new self-organizing map, Pattern Recognition, 34, 2395-2402, 2001.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAR0-0065-0063
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.