PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Wireless local area networks and its impact on current and future production processes

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nowadays there is a high demand to produce more, for a lower price and at the same time offer diversity of products. To achieve these aims, production lines need to be more flexible. The current network communications systems are dominated by the Ethernet technology and dedicated industrial protocols. Ethernet based industrial protocols have many advantages like: full duplex communication without collisions, high bandwidth or high communication reliability. However, they have one big disadvantage, limited mobility. Since a network device needs to be connected using cable, its placement is rather fixed. Apart from that, costs related with wired network infrastructure or further extensions are expensive and frequently complicated. Due to these reasons, the industrial users are looking towards wireless communication. A prominent candidate is the IEEE 802.11 WLAN standard, as it has comparable with the Ethernet data rates and resembles data link layer. An overview of how the WLAN standard fits to the industrial environment and a discussion about the current usage of the WLAN in industrial environments as well as outlook for future deployments will be given.
Twórcy
autor
  • Institut Industrial IT Ostwestfalen Lippe University of Applied Sciences, Liebigstrasse 87, 32657 Lemgo, Germany, phone: +49 05261-702-131, lukasz.wisniewski@hs-owl.de
Bibliografia
  • [1] Decotignie J.-D., “The Many Faces of Industrial Ethernet [Past and Present]”, Industrial Electronics Magazine, IEEE, 3, 1, 8-19, March 2009.
  • [2] IEC. IEC 61158-5-10, Digital data communication for measurement and control - Fieldbus for use in industrial control systems - Part 5-10: Application Layer service definition - Type 10 elements, 2006.
  • [3] IEC. IEC 61158-6-10, Digital data communications for measurements and control - Fieldbus for use in industrial control systems - Part 6-10: Application Layer service definition - Type 10 elements. 2006.
  • [4] IEC. IEC 61158-3-12, Digital data communications for measurement and control - Fieldbus for use in industrial control systems - Part 3-12: Data link service definition - Type 12 elements. 2006.
  • [5] IEC. IEC 61158-4-12, Digital data communications for measurement and control - Fieldbus for use in industrial control systems - Part 4-12: Data-Link protocol specification - Type 12 elements. 2006.
  • [6] Ethernet/IP. Ethenet Industrial Protocol (EtherNet/IP). www.ethernet-ip.org, 2008.
  • [7] IEEE STANDARD 802.11-2007 for Information Technology-Telecommunications and Information Exchange Between systems-Local and Metropolitan Area Networks-Specific Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical (PHY) Specifications, June 2007.
  • [8] IEEE P802.11n Draft Standard for Information Technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements. Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications. Amendment 5: Enhancements for Higher Throughput. June 2009.
  • [9] Willig A., Matheus K., Wolisz A., “Wireless Technology in Industrial Networks”, Proceedings of the IEEE, 93, 6, 1130-1151, June 2005.
  • [10] Moraes R., Vasques F., Portugal P., Fonseca J.A., “VTP-CSMA: A Virtual Token Passing Approach for Real-Time Communication in IEEE 802.11 Wireless Networks”, IEEE Transactions on Industrial Informatics, 3, 3, 215-224, August 2007.
  • [11] IEEE Media Access Control (MAC) Bridges, IEEE, New York, 1998, ANSI/IEEE Std 802.1D-1998.
  • [12] IEEE Standards for Local and Metropolitan Area Networks: Virtual Bridged Local Area Networks, IEEE Std. 802.1Q-1998.
  • [13] Ferrari P., Flammini A., Marioli D., Taroni A., Venturini F., “Evaluation of timing characteristics of a prototype system based on PROFINET IO RT Class 3”, IEEE Conference on Emerging Technologies and Factory Automation, 2007. ETFA, pp. 1254-1261, 25-28 September 2007.
  • [14] Decotignie J.-D., “Ethernet-Based Real-Time and Industrial Communications”, Proceedings of the IEEE, 93, 6, 1102-1117, June 2005.
  • [15] Kopetz H., Real-time systems: Design Principles for Distributed Embedded Applications, Kluwer academic publishers 1997.
  • [16] Jasperneite J., Schumacher M., Weber K., “Limits of increasing the performance of Industrial Ethernet protocols”, IEEE Conference on Emerging Technologies and Factory Automation, 2007. ETFA., pp.17-24, 25-28 September 2007.
  • [17] Ballon P., “Changing business models for Europe’s mobile telecommunications industry: The impact of alternative wireless technologies”, Telematics and Informatics, Volume 24, Issue 3, Mobile Communications: From Cellular to Ad-hoc and Beyond, August 2007, pp. 192-205.
  • [18] Dominguez-Jaimes I., Wisniewski L., Trsek H., Jasperneite J., “Link-layer retransmissions in IEEE 802.11g based industrial networks”, 8th IEEE International Workshop on Factory Communication Systems (WFCS), pp. 83-86, 18-21 May 2010.
  • [19] Matsuzono K., Sugiura K., Asaeda H., “Adaptive Rate Control with Dynamic FEC for Real-Time DV Streaming”, IEEE Global Telecommunications Conference, IEEE GLOBECOM 2008, pp. 1-6, November 30 2008-December 4 2008.
  • [20] Zhou Jingli, Ma Zhilong, Chen Xiaoping, “Transmission Distortion Optimized FEC Scheme for RealTime Wireless Video”, The 3rd International Conference on Grid and Pervasive Computing Workshops, 2008. GPC Workshops ’08, pp. 298-303, 25-28 May 2008.
  • [21] FL Wireless Simulation Tool Basic 2.0.0 Demo. http://eshop.phoenixcontact.com/phoenix/treeViewClick.do?UID=2692254&parentUID=&reloadFrame=true.
  • [22] A. Conway, IEEE 802.11n: the next step for industrial wireless LAN. The Journal of Industrial Network Connectivity, July 2010, Issue 59, pp. 27-29.
  • [23] Sendra S., Fernandez P., Turro C., Lloret J., “IEEE 802.11a/b/g/n Indoor Coverage and Performance Comparison”, 6th International Conference on Wireless and Mobile Communications (ICWMC), pp. 185-190, 20-25 September 2010.
  • [24] Trsek H., Faltinski S., Jasperneite J., Dominguez I., “IEEE 802.11n for industrial Automation - What are the advantages of the new WLAN Standard?”, in: 11 Wireless Technologies Kongress 2009 Stuttgart, September 2009.
  • [25] Wisniewski L., Borzemski L., Jasperneite J., “A New Scheduling Wireless Communication Mechanism in Cellular Systems Based on Genetic Approach”, International Conference Information Systems, Architecture, and Technology (ISAT 2010) Szklarska Poręba, Poland, September 2010.
  • [26] Daojun Xue, Yang Qin, Chee Kheong Siew, “WLC15-3: A Service Curve Based Scheduling Algorithm for QoS Support in 802.11e Wireless LANs”, IEEE Global Telecommunications Conference, 2006. GLOBECOM ’06, pp. 1-6, November 27 2006-December 1 2006.
  • [27] Trsek H., Jasperneite J., Karanam S.P., “A Simulation Case Study of the new IEEE 802.11e HCCA mechanism in Industrial Wireless Networks”, IEEE Conference on Emerging Technologies and Factory Automation, 2006. ETFA ’06, pp. 921-928, 20-22 September 2006.
  • [28] Dominguez-Jaimes I., Wisniewski L., Trsek H., “Identification of traffic flows in Ethernet-based industrial fieldbuses”, IEEE Conference on Emerging Technologies and Factory Automation (ETFA), pp. 1-4, 13-16 September 2010.
  • [29] Carcelle X., Dang T., Devic C., Wireless Networks in industrial environments: State of the art and Issues, IFIP International Federation for Information Processing, 2006, Volume 212, Ad-Hoc Networking, Pages 141-156.
  • [30] Wisniewski L., Trsek H., Dominguez-Jaimes I., Nagy A., Exel R., Kerö N., “Location-based handover in cellular IEEE 802.11 networks for Factory Automation”, IEEE Conference on Emerging Technologies and Factory Automation (ETFA), pp. 1-8, 13-16 September 2010.
  • [31] Merz H., “Hochverf¨ugberkeit in Industrial Wireless LAN durch Seamless Roaming‘”, Wireless Technologies 11. Kongress, September 2009.
  • [32] Wiberg P.-A., Bilstrup U., “Wireless technology in industry-applications and user scenarios”, 8th IEEE International Conference on Emerging Technologies and Factory Automation, 2001. Proceedings, pp. 123-131, vol. 1, 2001.
  • [33] Cena G., Seno L., Valenzano A., Zunino C., “On the Performance of IEEE 802.11e Wireless Infrastructures for Soft-Real-Time Industrial Applications”, IEEE Transactions on Industrial Informatics, 6, 3, 425-437, August 2010.
  • [34] Ormond N., “Welcome to the wireless world”, Computing & Control Engineering Journal, 17, 1, 28-31, Feb.-March 2006.
  • [35] Ahmad K., Ostfeld P.-B., Meier U., Kwašenicka H., “Exploitation of Multiple Hyperspace Dimensions to Realize Coexistence Optimized Wireless Automation Systems”, IEEE Transactions on Industrial Informatics, 6, 4, 758-766, November 2010.
  • [36] E. Nett, WLAN in Automation - More Than and Academic research, Lecture Notes in Computer Science, Vol. 3747/2005, 4-8, 2005.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAR0-0065-0053
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.