PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Multi-agent software architecture for autonomous robots: a practical approach

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper analyses the issues of designing software for an autonomous robot, which is perceived as a real-time, multi-stage data processing system. We focus on a functional analysis of the data-driven world-modelling and motion planning tasks performed by the robot, and then we develop a multi-agent software architecture, which guarantees flexible use of sensors and world representations. We demonstrate use of this architecture on two practical examples: an autonomous indoor mobile robot, which can be applied for janitorial services or as an AGV in flexible manufacturing, and on a walking robot, which is intended for reconnaissance and search missions, e.g. in hostile or polluted industrial environments.
Twórcy
  • Poznań University of Technology, Institute of Control and Information Engineering, Piotrowo 3A, 60-965 Poznań, Poland, phone: +48 61 6652198, piotr.skrzypczynski@put.poznan.pl
Bibliografia
  • [1] Garcia E., Jimenez M., Gonzalez De Santos P., Armada M., The Evolution of Robotics Research: From industrial robotics to field and service robotics, IEEE Robotics & Automation Magazine, 14 (1), 90-103, 2007.
  • [2] Takayama L., Ju W., Nass C., Beyond dirty, dangerous, and dull: what everyday people think robots should do, Proc. of Human-Robot Interaction (HRI), Amsterdam, 2009, pp. 25-32.
  • [3] Kelly A., Nagy B., Stager D., Unnikrishnan R., An infrastructure-free automated guided vehicle based on computer vision, IEEE Robotics & Automation Magazine, 14 (3), 25-34, 2007.
  • [4] Luo R.C., Kay M.G., Multisensor integration and fusion in intelligent systems, IEEE Trans. on Systems, Man, and Cybernetics, 19 (5), 61-70, 1989.
  • [5] Brzykcy G., Martinek J., Meissner A., Skrzypczyński P., Multi-agent blackboard architecture for a mobile robot, in: Proc. IEEE/RSJ Conf. on Intelligent Robots and Systems, Maui 2001, pp. 2369-2374.
  • [6] Engelmore R., Morgan T., (eds.), Blackboard systems, Addison-Wesley 1988.
  • [7] Schwartz D., Cooperating heterogenous systems, Boston, Kluwer 1995.
  • [8] Müller J., The design of intelligent agents: a layered approach, LNAI, Vol. 1177, Berlin, Springer 1996.
  • [9] Brzykcy G., Martinek J., Meissner A., Skrzypczyński P., Control aspects of the blackboard agent architecture for a mobile robot, Control and Cybernetics, 32 (4), 851-866, 2003.
  • [10] Brzykcy G., On some agent system development environments (in Polish), Pro Dialog, 15, 1-18, 2003.
  • [11] Utz H., Sablatnőg S., Enderle S., Kraetzschmar G., Miro-Middleware for mobile robot applications, IEEE Trans. on Robotics and Automation, 18 (4), 493-497, 2002.
  • [12] Kasiński A., Skrzypczyński P., Communication mechanism in a distributed system of mobile robots, in: Distributed Autonomous Robotic Systems 5 (H. Asama et al., eds.), Tokyo, Springer 2002, pp. 51-60.
  • [13] Skrzypczyński P., A team of mobile robots and monitoring sensors - from concept to experiment, Advanced Robotics, 18 (6), 583–610, 2004.
  • [14] Kruse E., Gutsche R., Wahl F., Intelligent mobile robot guidance in time varying environments by using a global monitoring system, Proc. IFAC Symp. on Intell. Autonomous Vehicles, Madrid, 1998, pp. 509-514.
  • [15] Skrzypczyński P., Perception uncertainty management in a mobile robot navigation system, Poznań, Wyd. Politechniki Poznańskiej 2007 - in Polish.
  • [16] Skrzypczyński P., Simultaneous localization and mapping: a feature-based probabilistic approach, Int. Journal of Applied Mathematics and Computer Science, 19 (4), 575-588, 2009.
  • [17] Skrzypczyński P., Uncertain spatial knowledge management in a mobile robot architecture, Proc. IEEE Conf. on Multisensor Fusion and Integration for Intelligent Systems, Heidelberg, 2006, pp. 420-425.
  • [18] Rusu R., Sundaresan A., Morisset B., Hauser K., Agrawal M., Latombe J.-C., Beetz M., Leaving flatland: efficient real-time three-dimensional perception and motion planning, Journal of Field Robotics, 26 (10), 841-862 2009.
  • [19] Estremera J., Garcia E., Gonzalez de Santos P., A multi-modal and collaborative human-machine interface for a walking robot, Journal of Intelligent and Robotic Systems, 35, 397-425, 2002.
  • [20] Łabęcki P., Rosiński D., Skrzypczyński P., Terrain perception and mapping in a walking robot with a compact 2D laser scanner, in: Emerging Trends in Mobile Robotics (H. Fujimoto et al., eds.), Singapore, World Scientific 2010, pp. 981-988.
  • [21] Schmidt A., Kasiński A., The visual SLAM system for a hexapod robot, in: Computer Vision and Graphics (L. Bolc et al., eds.), LNCS Vol. 6375, Berlin, Springer 2010, pp. 260-267.
  • [22] Belter D., Łabęcki P., Skrzypczyński P., Map-based adaptive foothold planning for unstructured terrain walking, Proc. IEEE Int. Conf. on Robotics and Automation, Anchorage, 2010, pp. 5256-5261.
  • [23] Walas K., Fully parametrized stair climbing strategy for a six-legged waling robot, in: Emerging Trends in Mobile Robotics (H. Fujimoto et al., eds.), Singapore, World Scientific 2010, pp. 777-784.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAR0-0065-0039
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.