Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the paper the forecasting models of tool use in dii erent intervals of time were presented. The models were worked out by the use of hybrid neural networks in the form of: linear neural network (L) - multi-layer networks with error backpropagation (MLP), L network - Radial Basis Function network (RBF), MLP network - RBF network and L network - MLP network - RBF network. The comparison of these models was executed. The effectiveness of forecasting of tool use in different time intervals is the measure of model evaluation. These models are used at the design stage of manufacturing process with the aim to plan production and prevent standstill due to lack of tools, and special tools in particular. The created models were tested on real data from an enterprise.
Wydawca
Czasopismo
Rocznik
Tom
Strony
31--39
Opis fizyczny
Bibliogr. 16 poz., tab., wykr.
Twórcy
autor
- Institute of Mechanics and Applied Computer Science, Kazimierz Wielki University, ul. Kopernika 1/206c, 85-074 Bydgoszcz, tel. +48 52 32-57-630, fax +48 52 32-57-611, izarojek@ukw.edu.pl
Bibliografia
- Caciotta M., Giarnetti S. and Leccese F. (2009). Hybrid Neural Network System for Electric Load Forecasting of Tele-comunication Station. In: XIX IMEKO World Congress Fundamental and Applied Metrology, Publishing House of Poznan University of Technology, Lisbon, pp. 657-661.
- Chen H., Grant-Muller S., Mussone L. and Montgomery F. (2001). A Study of Hybrid Neural Network Approaches and the Effects of Missing Data on Traffic Forecasting. Journal Neural Computing and Applications, Vol. 10(3), pp. 277-286.
- Deb S., Ghosh K. and Paul S. (2006). A neural network based methodology for machining operations selection in Computer Aided Process Planning for rotationally symmetrical parts. Journal Intelligent Manufacturing, Vol.17(5), pp. 557-569.
- Duda J., Habel J. and Pobozniak J. (2005). Use of Manufacturing Knowledge for Process Planning in Distributed Environment. In: Z. Weiss (ed.), Virtual Design and Automation, Publishing House of Poznań University of Technology, Poznań, pp. 187-194.
- Hand D., Mannila H. and Smyth P. (2001). Principles of data mining, Massachusetts Institute of Techynology.
- Knosala R. (ed.) (2002). Applications of artificial intelligence methods in production engineering. WNT, Warsaw (in Polish).
- Kusiak A. and Smith M. (2007). Data mining in design of products and production systems. IFAC Annals Reviews in Control, Vol. 31(1), pp. 147-156.
- Larose D.T. (2005). Discovering Knowledge in Data: An Introduction to Data Mining. John Wiley&Sons.
- Markopoulos A. P., Mandakos D. E., Vaxevanidis N. (2008). Artificial neural networks models fort he prediction of surface roughness in electrical discharge machining. Journal Intelligent Manufacturing, Vol. 19(3), pp. 283-292.
- Rojek I. (2010). Support of decision making processes and control in systems with different scale of complexity using artificial intelligence methods. Publishing House of Kazimierz Wielki University. Bydgoszcz (in Polish).
- Rokach L. and Maimon O. (2006). Data mining for improving the quality of manufacturing: a feature set decomposition approach. Journal Intelligent Manufacturing, Vol. 17(3), 285-299.
- Rutkowski L. (2008). Computational intelligence, methods and techniques. Springer-Verlag, Berlin Heidelberg.
- Smaoui N. (2004). A Hybrid Neural Network Model for the Dynamics of the Kuramoto-Sivashinsky Equation. In: Mathematical Problems in Engineering, Hindawi Publishing Corporation, Hindawi, pp. 305-321.
- R. Tadeusiewicz and P. Lula (2001). Statistica Neural Networks 4.0 PL: Introduction to neural networks. StatSoft Poland, Cracow (in Polish).
- Tsai C-F., McGarry K., Tait J. (2003). Image Classification Using Hybrid Neural Networks. In ACM Conference on Research and Development in Information Retrieval, New York, pp. 431-432.
- Wang K. (2007). Applying data mining to manufacturing: the nature and implications. Journal Intelligent Manufacturing, Vol. 18(4), pp. 487-495.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAR0-0065-0011