PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Model water disinfection with electrolysis using TinO2n-1 containing ceramic electrodes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Water treatment with electrolysis was performed in a specially made electrolytic cell containing TinO2n-1 ceramic anode and Escherichia coli was used as a model organism for disinfection tests. The results showed that even relatively low energy input (0.5-2.5kWh*m-3, depending on water conductivity) in water samples with chloride ions concentration below 50mg*l-1, TinO2n-1 ceramic electrodes generated active chlorine in the range of 0.4-3.5mg Cl2*l-1, which is the level of chorine used for water disinfection. The results also confirmed that disinfection effect is a result of generation of oxidant species from chlorine rather than effect of electricity per se, or formation of radicals in water. At chloride ion concentration about 7mg*l-1 E. coli is not culturable, not able to divide and not respiring. Results showed that increase of the current above 0.02A at chloride ion concentration of 7mg*l-1 was sufficient to inactivate both culturable and viable but nonculturable (VBNC) E. coli. Notably, the ability of bacteria to divide (DVC positive) was lost more rapidly than their ability to respire. Kinetics of disinfection was studied in water sample which was treated with 0.02A at chloride ion concentration of 7mg*l-1. After about 15 minutes of exposure no culturable or able-to-divide E. coli were detected in the sample. Using the TinO2n-1 electrode in the electrolysis process with the presence of chloride ions, in concentration range which is common in raw waters, one can create a level of active chlorine that kills more than 99% of E. coli within 15 minutes. A practically applicable simple model for prediction of disinfection efficacy with electrolytic cell has been proposed.
Rocznik
Strony
34--40
Opis fizyczny
Bibliogr. 42 poz., rys., wykr.
Twórcy
autor
autor
autor
autor
autor
  • Riga Technical University, Faculty of Materials Science and Applied Chemistry, Azenes 14/24, LV 1048, Riga, Latvia; telephone (+371) 67089211, madars.r@inbox.lv
Bibliografia
  • Anonymous. 1985. Water quality - Determination of free chlorine and total chlorine - Part 1: Titrimetric method using N, N-diethyl-1, 4-phenylenediamine. ISO 7393-1:1985. International Standard Organisation, Geneva, Switzerland.
  • Anonymous. 1998. Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. Official Journal of European Community 5 (12).
  • Bashir, M.J., M.H. Isa, S.R. Kutty, Z.B. Awang, H.A. Aziz, S. Mohajeri, I.H. Farooqi. 2009. Landfill leachate treatment by electrochemical oxidation. Waste Management 29: 2534-2554.
  • Bejan, D., F. Sagitova, N.J. Bunce. 2005. Evaluation of electrolysis for oxidative deodorization of hog manure. Journal of Applied Electrochemistry 35: 897-902.
  • Bejankiwar, R., J.A. Lalman, R. Seth, N. Biswas. 2005. Electrochemical degradation of 1,2-dichloroethane (DCA) in a synthetic groundwater medium using stainless-steel electrodes. Water Research 39: 4715-4724.
  • Bergmann, M.E.H., A.S. Koparal. 2005. Studies on electrochemical disinfectant production using anodes containing RuO2. Journal of Applied Electrochemistry 35: 1321-1329.
  • Chen, X., F. Gao, G. Chen. 2005. Comparison of Ti/BDD and Ti/SnO2–Sb2O5 electrodes for pollutant oxidation. Journal of Applied Electrochemistry 35: 185-191.
  • Cheng, C.Y., G.H. Kelsall. 2007. Models of hypochlorite production in electrochemical reactors with plate and porous anodes. Journal of Applied Electrochemistry 37: 1203-1217.
  • Choon, H.S., S.B. Jun. 2007. Operational performance of an electrolytic reactor in configurating a greywater treatment system for sewage/wastewater reuse. Journal of Industrial and Engineering Chemistry 13: 1091-1097.
  • Dar, L.S. 2007. Water and Wastewater Calculations Manual. Second edition. 945 p. McGraw-Hill.
  • Dreesa, K.P., M. Abbaszadeganb, R.M. Maier. 2003. Comparative electrochemical inactivation of bacteria and bacteriophage. Water Research 37: 2291-2300.
  • Feng, C., K. Suzuki, S. Zhao, N. Sugiura, S. Shimada, T. Maekawa. 2004. Water disinfection by electrochemical treatment. Bioresource Technology 94: 21-25.
  • Goss, W.A., W.H. Deitz, T.M. Cook. 1965. Mechanism of action of nalidixic acid on Escherichia coli. The Journal of Bacteriology 88: 1068-1074.
  • Jeong, J., J.Y. Kim, M. Cho, W. Choi, J. Yoon. 2007. Inactivation of Escherichia coli in the electrochemical disinfection process using a Pt anode. Chemosphere 67: 652-659.
  • Jeong, J., C. Kim, J. Yoon. 2009. The effect of electrode material on the generation of oxidants and microbial inactivation in the electrochemical disinfection processes. Water Research 43: 895-901.
  • Juhna, T., D. Birzniece, S. Larsson, D. Zulenkovs, A. Sharipo, N.F. Azevedo, F. Menard-Szczebara, S. Castagnet, C. Feliers, C.W. Keevil. 2007. Detection of Escherichia coli in biofilms from pipe samples and coupons in drinking water distribution networks. Applied and Environmental Microbiology 73: 7456-7464.
  • Jyoti, K.K., A.B. Pandit. 2001. Water disinfection by acoustic and hydrodynamic cavitation. Biochemical Engineering Journal 7: 201-212.
  • Jyoti, K.K., A.B. Pandit. 2004. Effect of cavitation on chemical disinfection efficiency. Water Research 38: 2249-2258.
  • Kalmbach, S., W. Manz, U. Szewzyk. 1997. Isolation of new bacterial species from drinking water biofilms and proof of their in situ dominance with highly specific 16S rRNA probes. Applied and Environmental Microbiology 63: 4164-4170.
  • Kell, D.B., A.S. Kaprelyants, D.H. Weichart, C.R. Harwood, M.R. Barer. 1998. Viability and activity in readily culturable bacteria: a review and discussion of the practical issues. Antonie van Leeuwenhoek 73: 169-187.
  • Kerwicka, M.I., S.M. Reddyb, A.H.L. Chamberlainb, D.M. Holta. 2005. Electrochemical disinfection, an environmentally acceptable method of drinking water disinfection? Electrochimica Acta 50: 5270-5277.
  • Kogure, K., U. Simidu, N. Taga. 1979. A tentative direct microscopic method for counting living marine bacteria. Canadian Journal of Microbiology 25: 415-420.
  • Kraft, A., M. Stadelmann, M. Blaschke, D. Kreysig, B. Sandt, F. Schröder, J. Rennau. 1999a. Electrochemical water disinfection. Part I: Hypochlorite production from very dilute chloride solutions. Journal of Applied Electrochemistry 29: 861-868.
  • Kraft, A., M. Blaschke, D. Kreysig, B. Sandt, F. Schröder, J. Rennau. 1999b. Electrochemical water disinfection. Part II: Hypochlorite production from potable water, chlorine consumption and the problem of calcareous deposits. Journal of Applied Electrochemistry 29: 895-902.
  • Kwang, W.K., K. In-Tae, I.P Geun, H.L. Eil. 2006. Electrolytic decomposition of ammonia to nitrogen in a multi-cell-stacked electrolyzer with a self-pH-adjustment function. Journal of Applied Electrochemistry 36: 1415-1426.
  • Leite, R.H.L., P. Cognet, A.M. Wilhelm, H. Delmas. 2003. Anodic oxidation of 2,4-dihydroxybenzoic acid for wastewater treatment. Journal of Applied Electrochemistry 33: 693-701.
  • Lisle, T.J., B.H. Pyle, G.A. McFeters. 1999. The use of multiple indices of physiological activity to access viability in chlorine disinfected Escherichia coli O157:H7. Letters in Applied Microbiology 29: 42-47.
  • McLoughlin, O.A., S.C. Kehoe, K.G. McGuigan, E.F. Duffy, F. Al Touati, W. Gernjak, O.I. Alberola, M.S. Rodríguez, L.W. Gill. 2004. Solar disinfection of contaminated water: a comparison of three small-scale reactors. Solar Energy 77: 657-664.
  • Mezule, L., S. Tsyfansky, V. Yakushevich, T. Juhna. 2010. A simple technique for water disinfection with hydrodynamic cavitation: Effect on survival of Escherichia coli. Desalination 251: 152-159.
  • Oliveira, F.H., M.E. Osugi, F.M.M. Paschoal, D. Profeti, P. Olivi, M.V.B. Zanoni. 2007. Electrochemical oxidation of an acid dye by active chlorine generated using Ti/Sn(1-x)IrxO2 electrodes. Journal of Applied Electrochemistry 37: 583-592.
  • Oliver, J.D. 2005. The viable but nonculturable state in bacteria. Journal of Microbiology 43: 93-100.
  • Palmas, S., A.M. Polcaro, A. Vacca, M. Mascia, F. Ferrara. 2007. Influence of the operating conditions on the electrochemical disinfection process of natural waters at BDD electrodes. Journal of Applied Electrochemistry 37: 1357-1365.
  • Pavlova, A., L. Berzina-Cimdina, J. Locs, D. Loca, J. Bossert. 2008. Preparation and characterisation of dense TiO2 ceramics. Advances in Science and Technology 54: 261-264.
  • Reimanis, M., J. Ozolins, J. Malers, V. Nikolajeva. 2009. Influence of various physical-chemical treatment methods on microbial growth in water. In: Proceedings of 7th International Conference “Environment. Technology. Resources” Rezekne, pp. 71-77. Rezekne Higher Education Institution Press.
  • Reimanis, M., J. Malers, J. Ozolins. 2010. Preparation of water using electrochemical processes. International Journal of Chemical and Environmental Engineering, World Academy of Research and Publication Press 1: 35-39.
  • Rodriguez, G.G., D. Hipps, K. Ishiguro, H.F. Ridgway. 1992. Use of a fluorescent redox probe for direct visualization of actively respiring bacteria. Applied and Environmental Microbiology 58: 1801-1808.
  • Schaule, G., H. Flemming, H. Ridgway. 1993. Use of 5-cyano-2,3-ditolyl tetrazolium chloride for quantifying planktonic and sessile respiring bacteria in drinking water. Applied and Environmental Microbiology 59: 3850-3857.
  • Scherba, G., R.M. Weigel, W.D. O`Brien, Jr. 1991. Quantitative assessment of the germicidal efficacy of ultrasonic energy. Applied and Environmental Microbiology 57: 2079-2084.
  • Shi, H.X., J.H. Qu, A.M. Wang, J.T. Ge. 2005. Degradation of microcystins in aqueous solution with in situ electrogenerated active chlorine. Chemosphere 60: 326-333.
  • Waterston, K., J.W. Wang, D. Bejan, N.J. Bunce. 2006. Electrochemical waste water treatment: Electrooxidation of acetaminophen. Journal of Applied Electrochemistry 36: 227-232.
  • Watts, R.J., M.S. Wyeth, D.D. Finn, A.L. Teel. 2008. Optimization of Ti/SnO2-Sb2O5 anode preparation for electrochemical oxidation of organic contaminants in water and wastewater. Journal of Applied Electrochemistry 38: 31-37.
  • Zaggout, F.R., N.A. Ghalwa. 2008. Removal of o-nitrophenol from water by electrochemical degradation using a lead oxide/titanium modified electrode. Journal of Environmental Management 86: 291-296.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAR0-0065-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.