PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Preliminary study on adverse effects of phenanthrene and its methyl and phenyl derivatives in larval zebrafish, Danio rerio

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Toxic effects of polycyclic aromatic hydrocarbons (PAHs) have been extensively studied in fish, although knowledge concerning biological activities of phenanthrene and its derivatives remains still incomplete. The aim of this work was to evaluate lethal and sublethal effects of benzo(a)pyrene, phenanthrene and phenanthrene derivatives (1-methylphenanthrene, 4-methylphenanthrene, 1-phenylphenanthrene and 4-phenylphenanthrene) on zebrafish (Danio rerio) larvae. We conducted acute toxicity test, using 96h static renewal exposure to a series of the PAH concentrations (0.05, 0.50, 5.00, 50.00µmol*l-1), to determine the No Effect Concentration (NEC) value for each compound examined. The mean NEC estimates obtained in the study were 5.16۪.45µmol*l-1 (B[a]P), 4.88۪.13µmol*l-1 (Ph), 40.24䔰.93µmol*l-1 (1P-Ph), 47.92ۭ.61µmol*l-1 (1M-Ph), 24.31۱.33µmol*l-1 (4P-Ph) and 3.11۫.01µmol*l-1 (4M-Ph) and suggested the following order of PAH toxicities on Danio rerio larvae: 4M-Ph>Ph˜B[a]P>4PPhᲙP-Ph>1M-Ph. To gain insight into possible molecular mechanisms of apparent toxicity of phenanthrene derivatives on zebrafish larvae, we examined mRNA expression of cyp1a, cyp1b1, and vtg genes in the larvae exposed for 48h to a PAH concentration of 0.50µmol*l-1. Whereas the larvae exposed to each tested PAH displayed many developmental abnormalities (i.e. pericardial and yolk sac edema, dorsal curvature, or tail malformations), no significant upregulation of cyp1a and cyp1b1 mRNA was observed, except for zebrafish exposed to B[a]P. However, significant reduction of vtg mRNA was observed in the larvae exposed to phenanthrene and its 4P- derivative. The results may contribute to the development of a new knowledge about effects of structurally diverse phenanthrene derivatives on vertebrate organisms.
Rocznik
Strony
26--33
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
autor
autor
autor
autor
autor
autor
  • Department of Environmental Biotechnology, Faculty of Environmental Sciences and Fisheries, University of Warmia and Mazury in Olsztyn, ul. Słoneczna 45G, 10-709 Olsztyn, Poland; Phone: (+48) (89) 523 41 44, Fax: (+48) (89) 523 41 31, lidia.wolinska@uwm.edu.pl
Bibliografia
  • Barron, M.G., M.G. Carls, R. Heintz, S.D. Rice. 2004. Evaluation of fish early life-stage toxicity models of chronic embryonic exposures to complex polycyclic aromatic hydrocarbon mixtures. Toxicological Sciences 78: 60-67.
  • Basu, N., S. Billiard, N. Fragoso, A. Omoike, S. Tabash, S. Brown, P. Hodson. 2001. Ethoxyresorufin-O-deethylase induction in trout exposed to mixtures of polycyclic aromatic hydrocarbons. Environmental Toxicology and Chemistry 20: 1244-1251.
  • Brinkworth, L.C., P.V. Hodson, S. Tabash, P. Lee. 2003. CYP1A induction and blue sac disease in early developmental stages of rainbow trout (Oncorhynchus mykiss) exposed to retene. Journal of Toxicology and Environmental Health Part A 66: 627-646.
  • Hawkins, S.A., S.M. Billiard, S.P. Tabash, R.S. Brown, P.V. Hodson. 2002. Altering cytochrome P4501A activity affects polycyclic aromatic hydrocarbon metabolism and toxicity in rainbow trout (Oncorhynchus mykiss). Environmental Toxicology and Chemistry 21: 1845-1853.
  • Hillwalker, W.E, S.E. Allan, R.L Tanguay, K.A. Anderson. 2010. Exploiting lipid-free tubing passive samplers and embryonic zebrafish to link site specific contaminant mixtures to biological responses. Chemosphere 79: 1-7.
  • Huntingford, F.A., C. Adams, V.A. Braitwaite, S. Kadri, T.G. Pottinger, P. Sandøe, J.F. Tumbull. 2006. Current issues in fish welfare. Journal of Fish Biology 68: 332-372.
  • Incardona, J.P., T.K. Collier, N.L Scholz. 2004. Defects in cardiac function precede morphological abnormalities in fish embryos exposed to polycyclic aromatic hydrocarbons. Toxicology and Applied Pharmacology 196: 191-205.
  • Incardona, J.P., M.G. Carls, H. Teraoka, C.A. Sloan, T.K. Collier, N.L. Scholz. 2005. Aryl hydrocarbon receptor – independent toxicity of weathered crude oil during fish development. Environmental Health Perspectives 113: 1755-1762.
  • Incardona, J.P., L.D. Heather, T.K. Collier, N.L. Scholz. 2006. Developmental toxicity of 4ring polycyclic aromatic hydrocarbons in zebrafish is differentially dependent on AH receptor isoforms and hepatic cytochrome P4501A metabolism. Toxicology and Applied Pharmacology 217: 308-321.
  • Jin, Y., W. Wang, G.D. Sheng, W. Liu, Z. Fu. 2008. Hepatic and extrahepatic expression of estrogen-responsive genes in male adult zebrafish (Danio rerio) as biomarkers of short-term exposure to 17β-estradiol. Environmental Monitoring and Assessment 146: 105-111.
  • Kausch, U., M. Alberti, S. Haindl, J. Budczies, B. Hock. 2008. Biomarkers for exposure to estrogenic compounds: Gene expression analysis in zebrafish (Danio rerio). Environmental Toxicology 23: 15-24.
  • Kimmel, C.B., W.W. Ballard, S.R. Kimmel, B. Ullmann, T.F Schilling. 1995. Stages of embryonic development of the zebrafish. Developmental Dynamics 203: 253-310.
  • Kooijman, S.A.L.M, J.J.M. Bedaux. 1996. Analysis of toxicity tests on fish growth. Water Research 30: 1633-1644.
  • Lammer, E., H.G. Kamp, V. Hisgen, M. Koch, D. Reinhard, E.R. Salinas, K. Wendler. 2009. Development of flow-through system for the fish embryo toxicity test (FET) with the zebrafish (Danio rerio). Toxicology in Vitro 23: 1436-1442.
  • LaVoie, E.J., L. Tulley-Freiler, V. Bedenko, D. Hoffmann. 1981. Mutagenicity, tumor-initiating activity, and metabolism of methylphenanthrenes. Cancer Research 41: 3441-3447.
  • Leppänen, H., A. Oikari. 2001. Retene and resin acid concentrations in sediment profiles of a lake recovering from exposure to pulp mill effluents. Journal of Paleolimnology 25: 367-374.
  • Łuczyński, M.K, M. Góra, P. Brzuzan, J. Wilamowski, B. Kozik. 2005. Oxidative metabolism, mutagenic and carcinogenic properties of some polycyclic aromatic hydrocarbons. Environmental Biotechnology 1: 16-28.
  • Mhadhbi, L., M. Boumaiza, R. Beiras. 2010. A standard ecotoxicological bioassay using early stages of the marine fish Psetta maxima. Aquatic Living Resources 23: 209-216.
  • Muri, G., S.G. Wakeham. 2009. Effect of depositional regimes on polycyclic aromatic hydrocarbons in Lake Bled (NW Slovenia) sediments. Chemosphere 77: 74-79.
  • OECD. 1992. Organisation for Economic Cooperation and Development. Guideline for testing of chemicals. 210. Fish, Early-life Stage Toxicity Test. Adopted: 17.07.1992.
  • PAN Pesticides Database. 2010. Chemical toxicity studies on aquatic organisms. Available from: http://www.pesticideinfo.org/List_AquireAll.jsp?Rec_Id=PC42686 (accessed October 5, 2010).
  • Pfaffl, M.W., G.W. Horgan, L. Dempfle. 2002. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Research 30 (9): e36.
  • Rospondek, M.J., L. Marynowski, A. Chachaj, M. Góra. 2009. Novel aryl polycyclic aromatic hydrocarbons: Phenylphenanthrene and phenylanthracene identification, occurrence and distribution in sedimentary rocks. Organic Geochemistry 40: 986-1004.
  • Scott, J.A., J.P. Incardona, K. Pelkki, S. Shepardson, P.V. Hodson. 2010. AhR-2 mediated, CYP1A-independent cardiovascular toxicity in zebrafish (Danio rerio) embryos exposed to retene. Aquatic Toxicology 101: 165-174.
  • Segner, H. 2009. Zebrafish (Danio rerio) as a model organism for investigating endocrine disruption. Comparative Biochemistry and Physiology, C 149: 187-195.
  • Timme-Laragy, A.R., C.J. Cockman, C.W. Matson, R.T. Di Giulio. 2007. Synergistic induction of AHR regulated genes in developmental toxicity from co-exposure to two model PAHs zebrafish. Aquatic Toxicology 85: 241-250.
  • Turcotte, T., P. Akhtar, M. Bowerman, Y. Kiparissis, R.S. Brown, P.V Hodson. 2011. Measuring the toxicity of alkyl-phenanthrenes to early stages of medaka (Oryzias latipes) using partitioncontrolled delivery. Environmental Toxicology and Chemistry 30: 487-495.
  • Vogel, G. 2000. Genomics. Sanger will sequence zebrafish genome. Science 290: 1671.
  • Westerfield, M. 2000. The Zebrafish Book. A Guide for the Laboratory Use of Zebrafish (Danio rerio). 4th ed. University of Oregon Press, Eugene.
  • White, P.A., S. Robitaille, J.B. Rasmussen. 1999. Heritable reproductive effects of benzo[a]pyrene on the fathead minnow (Pinephales promelas). Environmental Toxicology and Chemistry 18: 1843-1847.
  • Zanette, J., M.J. Jenny, J.V. Goldstone, B.R. Woodin, L.A. Watka, A.C. Bainy, J.J. Stegeman. 2009. New cytochrome P450 1B1, 1C2, and 1D1 genes in the killifish Fundulus heteroclitus: Basal expression and response of five killifish CYP1s to the AHR agonist PCB126. Aquatic Toxicology 93: 234-243.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAR0-0065-0004
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.