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Summary 
The last paper of the present author [19] was concerned with multidimensional condition 

monitoring of the machines and the application of singular value decomposition (SVD). It was 
shown there, the immunity of singular values against uncontrolled load change, and they are also 
some measures of damage intensity. Following this, a simple model of singular value evolution 
has been proposed here and tested by means of three cases of real diagnostics in industry. It was 
found that postulated linear growth of singular value is good approximation of its real behavior 
and the same concerns the exponential growth of singular values product. Moreover this measures 
are sensitive to the redundancy of observation space and can depict clearly a lifetime when real 
damage in a monitored system starts. These properties seem to be much wanted in condition 
monitoring, so further investigations are planned. 

 
Key words: machine condition, symptom observation matrix, singular value decomposition, 

evolution of singular values. 
 

WARTO CI SZCZEGÓLNE SYMPTOMOWEJ MACIERZY OBSERWACJI 
EKSPLOATOWANEGO SYSTEMU MECHANICZNEGO JAKO WSKA NIKI ZU YCIA 

 

       Ostatnia praca autora [19] pokazuje zastosowanie rozk adu warto ci szczególnych 
symptomowej macierzy obserwacji w diagnostyce maszyn. Pokazano tam, e ewolucja warto ci 
szczególnych rozk adu w czasie ycia maszyny jest niewra liwa na wahania obci enia roboczego 
systemu. Zatem w obecnej pracy zaproponowano liniowy model ewolucji warto ci szczególnych i 
ekspotencjalny model dla ich iloczynu. Porównania tych modeli z rzeczywistym przebiegiem 
warto ci szczególnych eksploatowanych maszyn pokazuj , e dla przypadku liniowego zu ycia 
jest to dobry model, natomiast cz sto wida  skoki poziomu w ewolucji warto ci szczególnej. Mo e 
to wiadczy  o pojawieniu si  dodatkowego uszkodzenia, b d  o przej ciu zu ycia do bardziej 
intensywnej fazy rozwoju. Planuje si , zatem przeprowadzi  dalsze badania celem wyja nienia 
szczegó owego zachowania warto ci szczególnych. 

 
S owa kluczowe: stan maszyny, symptomowa macierz obserwacji, dekompozycja SVD, ewolucja 

warto ci szczególnych. 
 

1. INTRODUCTION 

The idea of symptom observation matrix (SOM) 
in multidimensional condition monitoring of machines 
is well established and brings several advantages, [1, 3, 
15 - 19]. It is basing on p > r rectangular symptom 
observation matrix, with (r) symptoms Sr in columns, 
measured along the system life , what gives p 
symptom readings in our passive diagnostic 
experiment [1]. This observation technique allows 
placing all physically different symptoms1 measured in 
a phenomenal field of the machine in one SOM, and to 
process them in order to obtain projection of designed 
observation space to the fault space of machine, 
which we are looking for. Of course, at the beginning 
we usually observe more symptoms (columns of SOM), 

                                                 
1 Symptom, measurable quantity covariable (or 

assumed to be) with the system condition 

than there is expected number of essential faults2 
in a machine.  

The preprocessing of SOM may be different 
(see for example [17]), but for condition 
monitoring it was found that normalization and 
extraction of symptom initial value is the best 
solution, bringing all symptoms to their 
dimensionless and most sensitive form. Then, 
the application of SVD to the dimensionless 
form of SOM gives needed projection of 
observation space (symptoms) to the fault space - 
described by the generalized fault symptoms and 
singular values. The resultant three matrices of 
SVD decomposition allow calculating the two 

                                                 
2 Essential fault can lead to machine breakdown 
or terminal damage, if not interrupted by 
machine renewal. 
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diagnostically important matrices. The first is SD 
matrix, which give us generalized fault symptoms SDi, 
and in theory they are independent each other. From 
this matrix we can calculate so called total damage 
(generalized) symptom, as the sum of all SDi 
generalized fault symptoms. This is mainly in order to 
calculate the symptom limit value Sl , or to make the 
forecast of the total damage symptom. The second AL 
matrix, allows us to assess the contribution of primary 
measured symptoms Sr to a newly formed generalized 
fault symptoms SDi . In this way we can just say which 
of primary measured symptom is redundant, giving no 
substantial information contribution to the given SDi, 
and as such can be rejected from further calculations 
and/or future measurements.  

But should we use the lifetime evolution of 
generalized fault symptoms SDi as the only measure of 
evolving faults in a machine? From the SVD 
decomposition we suppose that singular values i may 
have some diagnostic meaning. They can be 
interpreted as the generalized fault intensities, 
describing the advancement of the given kind of 
damage in a wearing machine. And also, they can be 
calculated after each new observation of symptom 
vector, allowing in this way the step by step tracing of 
this measure of evolving fault [19]. We will try to 
show this new possibility of inference using singular 
value decomposition (SVD) technique, in the way as it 
was shown in our earlier papers. In these papers some 
new measures based on singular values has been 
defined, namely modified Frobenius norm of SOM, 
being a sum of all nonzero singular values - SV, and so 
called volume of fault space – being the product of all 
nonzero SV. It will be interesting to know how the 
evolution of these measures can be modeled 
mathematically, and how they do behave theoretically 
and in practical circumstances of machine condition 
monitoring. It was found in this way that the 
approximate model of individual singular value and 
Frobenius modified measure may have the linear 
growth, while the volume measure is exponential 
function of the system lifetime. The present paper 
shows these properties of singular values and indicates 
their possible applicability in a diagnostic inference. 
 

2. SYMPTOM OBSERVATION MATRIX (SOM) 

PROCESSING AND GENERALIZED FAULT 

EVOLUTION 

It was described earlier, our information on 
machine condition evolution is contained in   p x r 
SOM, where r columns (primary symptoms) and  p 
rows of successive readings of each symptom are 
located. Usually they are made at equidistant system 
lifetime moments n, n=1,2,…p.  In pre-processing 
operations, the columns of SOM are centered and 
normalized to the three point average of initial 
readings of every symptom. This is in order to make 
the SOM dimensionless, and to diminish starting 

disturbances of symptoms (averaging). This 
allows also to present the evolution range of 
every symptom from zero up to few times of its 
initial symptom value S0r, (measured in the 

vicinity of  = 0). Also it was found in some 
earlier paper of the author, that the addition of 
linear growing system life symptom (LS) in the 
first column of SOM, give us new information 
concerning the intensity of use of the 
investigated machine. 

After such preprocessing we obtain the 
dimensionless SOM in the form; 

 

 ,1,
0m

nm
nmnmpr

S

S
SSOSOM  (1) 

This additional symptom can not have to 
small values or to large values, because in this 
way it will, or will not, influence our calculation 
and final result. If machine observation starts 
from its good condition, than usually symptoms 
starts also from small values, and at the end of 
life we have maximal symptom values. Hence 
one way of scaling life symptom LS may include 
multiplying by the average of last readings of all 
observed primary symptoms. Let the counting of 
symptom readings in SOM will be i = 1:n, and 
for r symptoms one can write; 

LS = ( r )-1.
r

nmS
1

. (i / n) , i = 1:n, (1a) 

where Snm means the last readings of symptom 
number m. 

Now, adding LS symptom as a first column 
to the old SOM (1) we have a new appended 
SOML, which includes explicit machine life 
information to our diagnostic calculations and 
decision. Having this, we can apply the Singular 
Value Decomposition (SVD) [10], [12l],[9], to 
our dimensionless SOM (1), to obtain singular 
components (vectors) and singular values 
(numbers) of SOM, in the form 

 
),(, iontranspositmatrixT

T

rrprpppr VUO

(2) 
 

where; Upp is p dimensional orthonormal matrix 
of left hand side singular vectors, Vrr is r 

dimensional orthonormal matrix of right hand 
side singular vectors, and the diagonal matrix of 
singular values (s. v), pr  is defined as below 

,0...:..

,

21

,....,1

u

lpr

vsnonzerowhit
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  (3) 
 and zero s. v. ; u+1 = … l = 0;   l= max (p, r),   

u  min ( p, r),  u < r < p. 
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Going back to SVD itself it is worthwhile to say, 
that every non square matrix has such decomposition, 
and it may be interpreted also as the product of three 
matrices [12], namely 

     Opr =  (Hanger)  ( Stretcher)  (AlignerT)        (4) 
 

This is a very metaphorical description of SVD 
matrix transformation, but it seems to be a useful 
analogy for the inference and decision making in 
condition monitoring. The diagnostic interpretation of 
formulae (4) can be obtained very easily. Namely, 
using its left hand side part, we are stretching our 
SOM over the life (observations) dimension, obtaining 
the matrix of generalized symptoms SD as the 
columns of the matrix. And using the right hand side 
part of (4) we are stretching SOM over the observed 
(primary) symptoms dimension in the form of matrix 
AL, assessing in this way the contribution of each 
primary symptom to the generalized fault symptom 
SDi ,i=1,…u. Hence 

 
T

rrpr VprO

S

T
pp

pprrpr

UAL

 and;

    ,pr;  UVOD
 (5) 

 
We will calculate the above matrices and use them 

for better interpretation of monitoring results (SD) and 
optimization of the dimension of the observation space 
(AL). 

As the rows of SOM matrix are formed along the 
machine lifetime, so the columns of SD matrix have 
the same discrete argument of life time , and we can 
write their fault space interpretation as below; 

 SDt ( )  Ft( ),     t=1,2,…,Norm (SDt)  SDt = 

t. , t = 1, ...,u              (6) 
 

For the assessment of total machine damage we 
can calculate the sum of all generalized symptoms 

 

)()(
11

F
z

i

ii

z

i

ii uSDSumSD

     (7) 
  

where; ui  is a column of Upp matrix. 

This concept of diagnostic inference, for individual 
fault Ft( ), (6), and total fault damage  F(   (7) has 
been proven in several papers [1, 3, 11], [13-19], and 
we will use it here in further consideration. 

The above results, based on generalized fault 
symptoms, have been obtained only from the first 
matrix SD of (5). And the second matrix AL gives us 
the relative measure of information contribution to 
each generalized symptom, as given by particular 
primary symptom measured during the SOM 
gathering. This is one way of assessment of the 
primary symptom redundancy, but we need some other 
global indicators of rejection of the redundant 
symptom. In our previous papers we have used 
modified Frobenius norm of SOM and the generalized 

volume of the fault space created by SOM. What 
is important in such an approach, these two 
measures are based on singular values of SOM, 
which in turn can be treated as the faults 
advancement measure (see (6-7)). Hence we 
have; 

Frob1 =  i ; 
    and;    Vol1 =  i ,   i = 1,…u.      (8) 

Looking for the way of value creation 
method of the above, one can infer that if some 
primary symptom will be really redundant (small 

i ) its rejection should give a small change to; 
Frob1 measure, and in contrary it should  
increase much the fault space volume; Vol1. We 
will notice also how it behaves with real 
examples of symptom rejection and addition in 
SOM of diagnosed machines latter on.  

Such way of diagnostic inference described 
in (8) has been used in last papers of present 
author. However there is question now; why do 
not treat these two measures (8) as evolving 
along system lifetime  , together with the 
evolution of all generalized faults in a machine? 
So instead of (8) we can write down as below 

Frob1( =  i( ; and; Vol1(  =  i( , 

i = ,…u.   (9) 

And of course the system lifetime will be the 
discrete variable in the above, the same as 
moment of symptom readings n  n=1,…m, in 
our primary SOM. We will see below what 
evolutional property have newly defined 
measures (9), and how much this can help in 
tracing the fault evolution (development) and 
reduction of observation redundancy in the real 
cases of machine diagnostics.  
 
3. THE SIMPLIFIED THEORY OF 

SYSTEM DAMAGE AND SINGULAR 

VALUES EVOLUTION 

 
Trying to build simple theory of singular 

value possible behavior, let us assume that our 
system in operation, machine or it element, has a 
constant working load, what assures the low 
level of external disturbances in symptom 
observation. Of course the constant working 
load is a source of constant wear of machine 
elements, giving a constant rise of each 
symptom value. In such case we can assume in a 
first approach, that our primary symptoms have 
also almost linear changes, as below. 
 
 Sj( ) = Sjo +  (bjo +  bj ( )),  << 1,  j = 1,… r; 

 = 1, 2, … p.  (10) 
 
where Sjo and bjo are the initial value and the 
slope of symptom number j, and  is small 
number allowing the deflection of symptom 
from a linear law of behavior during consecutive 
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symptom readings 1, 2, … p , and forming symptom 
observation matrix - SOM . 

The decomposition of SOM give us the generalized 
fault symptoms SDt ( ) and singular values t( ), t = 

1, ...,u, and we may assume also their similar almost 
linear behavior. This may be written as below.  

 
 SDt ( ) =  SDt o +  (cjo +  cj( )),  = m , m = 1,…p,(11) 
 

 t( )  = to +  (ato +  at( )), t = 1, ...,u,  
 
where u is the rank of SOM being usually the number 
of symptoms (columns) in SOM, and cj( )), at( )), bj 

( )) are set to zero in a first approach to modeling their 
evolution.  

The initial values of generalized fault symptom SDt 

o and singular value to depends on the way of SOM 
pre-processing. In case where each primary symptom 
(10) is normalized and centred to the initial value, they 
become zero; to = 0 , and our decomposition results 
(11) starts their evolution from zero value. There is 
also the difference in SOM decomposition presentation 
along the life coordinate and the symptom dimension. 
In both cases the initial value is zero for 1, but later 
on the lifetime evolution generalized symptoms and 
singular values differ.   

Let us see also how our measures of information 
content in SOM (9) will fit into our model (11) taken 
in a first approximation. 
 
  Frob1( =   (    ·  ato , t= 1,…u. (12) 

and; 

Vol1(  =   (      u
 ·  ato  { = 0 , t = 1,…m 

{  0,  t = m+1,…u 

 
As it is seen in a first approximation, both information 
content measures grows with system lifetime  , and 
first Frob1 grows linearly, while the second Vol1 

exponentially. Hence in reality of condition 
monitoring they must be non decreasing 
functions of lifetime, i.e. will grow with 
increased number of symptom readings, or the 
rows of the SOM. 

The course of all generalized symptoms SDt 

( ) have nonzero values during the next life 
increments but singular values  (  starts 
sequentially, the second life increment m , m=1 

gives nonzero t( ) , for t=1 only, and each 
subsequent lifetime increment switches on the 
next nonzero singular value, up to the readings 
number r+1, (r being the number of symptoms), 
when all singular values have already  nonzero 
values. We will see that this property is 
important for s.v product measure, when looking 
for processing results at the next point of the 
paper. 
 
4. THE EVOLUTION OF SINGULAR 

VALUE OF SYSTEMS IN OPERATION 

-EXAMPLES 

 

Starting our illustrative and validating 
examples let us take SOM of small ball bearing 
at durability testing stand under constant load 
during the whole test. Here the peak and rms 
amplitudes of acceleration and velocity of the 
bearing outer ring has been measured, together 
with acoustic emission energy, the temperature, 
and the stand driving power. Altogether the 
SOM has 7 symptoms and appended lifetime in 
the first column. During the SOM preprocessing 
the symptom normalization and centering to the 
initial value has been applied. Special Matlab® 
program svdoptsvev.m has been compiled from 
the author previous programs, and the 
processing result one can see in the figure below. 
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Fig. 1. Small ball bearing at durability testing stand and diagnostic decomposition of its SOM, 

 as a sequence o pictures 
 
 

The picture upper left presents graphically SOM 
as it was received and registered. As one can notice, 
one of the symptoms, the driving power of test stand is 
falling down, reciprocally to the deteriorating bearing 
condition. The other symptoms create the bunch of 
similar symptom life curves, much better seen after 
normalization and centering (picture middle left), 
where the straight line of bearing lifetime is also 
visible. We can notice that centering and normalization 
is right preprocessing method, allowing comparing the 
real diagnostic value and sensitivity of primary 
measured symptoms.  

The generalized fault symptoms obtained after 
SVD one can see in the picture bottom left, where two 
life curves are distinguishable only. These are, the total 

damage symptom SumSDi and the generalized 
symptom of fault No 1 i.e. SD1. This means we 
have one type of damage in the bearing, what is 
confirmed from the picture upper right, where 
the succession of SOM singular values (s.v), i is 
presented in descending order. There is also the 
assessment of information content of primary 
measured symptoms in the picture middle right, 
where one can see the low information 
contribution of last three primary symptoms, this 
means they maybe redundant. The last picture, 
the bottom right presents the step by step 
calculation of symptom limit value, needed in 
every diagnostic case, but not necessarily in our 
case. 
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Fig. 2. SOM of the same bearing krak1 processed after rejection of 2 redundant symptoms 
 

The presented software allows also the rejecting 
of some redundant symptoms from initial SOM, and 
the next Fig. 2 shows the result of such rejection of 
symptoms No 6 and 7, presented in the same mode of 
six pictures. One can say they are similar, but much 
smoother, and have different values of Frob1 and Vol1 
information measures calculated from singular values 
of SOM. Hence it will of much interest to see the 
evolution of these measures and respective singular 
values as well. 

 The lifetime evolution of these quantities is 
shown in two pictures; Fig. 3 for the original SOM, 
and Fig. 4 for SOM with rejected symptom No 6, and 
7. The left picture of each figure presents the evolution 
of individual singular values and sum of them, as the 

total damage symptom. We can notice that our 
simple theory with linear and exponential grows 
of these quantities (12) is here approximately 
true in both figures, i.e. for original SOM and for 
abbreviated SOM, after the rejection of two 
symptoms. The right hand side pictures of Fig. 3 
and Fig. 4 shows us that the product of singular 
values is continuously growing exponential 
function, and is much more sensitive to detect 
wear changes of ball bearing when the 
redundancy of SOM has been reduced, (Fig. 4), 
where bearing deterioration is noticeable starting 
from 0.2 of dimensionless life of bearing. 

 



DIAGNOSTYKA - DIAGNOSTICS AND STRUCTURAL HEALTH MONITORING 4(60)/2011 
CEMPEL, Singular values of symptom observation matrix of a system in operation  as indicators … 

 

33

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90

SvdOptSvEv.m; Life evol.of singular values 
i

Lifetime/normalized

R
e
l.
A
m
pl
it
u
d
e
o
f

i

Frob1=84.6706

Sum
i

i

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Evol.of first(m/2) singular values product; for=krak1

Lifetime/normalized

N
o
rm
a
liz
e
d
a
m
pl
it
u
d
e
o
f
fi
rs
t

i
pr
o
d
u
c
ts

  m=8

Vol1=159.597

life-max=42

 
Fig.3. The lifetime evolution of singular values; their sum and product 
as the illustration of constant speed damage of the ball bearing krak1 

 

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90

SvdOptSvEv.m; Life evol.of singular values 
i

Lifetime/normalized

R
e
l.
A
m
pl
it
u
d
e
o
f

i

Frob1=83.6039

Sum
i

i
   

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Evol.of first(m/2) singular values product; for=krak1

Lifetime/normalized

N
o
rm
a
liz
e
d
a
m
pl
it
u
d
e
o
f
fi
rs
t

i
pr
o
d
u
c
ts

  m=6

Vol1=1724.2821

life-max=42

Rejected symptoms No 6,7

 
Fig.4. The lifetime evolution of singular values of ball bearing krak1, after rejection of two redundant symptoms 

 

We can confirm again that the reduction of SOM 
redundancy causes small decrease of Frob1 measure, 
but dramatic increase of the volume of generalized 
fault space Vol1 is taking place. In conclusion one can 
say that Frob1 is the good measure of overall system 
condition, and Vol1 is sensitive to drop of the 
redundancy in SOM. 

It will be of much interest to investigate the 
behavior of this measure at normal operating condition 
of the machine, not as it was just before, where ball 
bearing had the constant working load. Hence we 
present below two troublesome cases of real life 
diagnostics; ventilation fan in copper mines where the 
load control of the fan is impossible (Fig. 5), and the 
coal mill fan working with modulated load in very 
noisy surroundings (Fig. 9).  

Fig. 5 presents the tragedy of uncontrolled load, 
where even after SVD decomposition; no one knows 

how to infer on fan condition. Here five 
vibrational symptoms have been monitored over 
30 week’s lifetime. But after the rejection of one 

load sensitive symptom (No 4), the situation was 

much more cleared and almost diagnosable, (see 

Fig. 6). 

 

Looking now for the evolution of singular 

values (Fig. 7 and 8) we do not see any trouble 

with uncontrolled oscillating load, even with 

load sensitive symptom (Fig. 7). One can see 

almost linear grows of Frobenius SOM measure 

Frob1, and damage sensitive measure of Vol1, 

which starts rapidly exponentially, grows at 0.6 

of dimensionless machine lifetime. 
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Fig. 5. Ventilation fan in one Polish copper mine with uncontrolled load, and its SOM decomposition 
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Fig. 6. SOM of the same fan as in fig.5 but without symptom no 4 
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Fig. 7. The evolution of singular values for the ventilation fan with SOM presented in Fig. 5 
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Fig. 8. Ventilation fan as before but with rejected one symptom 

 
But when we reject the load sensitive symptom (no 

4, Fig. 8), the coarse of both measure is improving 
much, especially Vol1, which shows system 
degradation starting much earlier, exactly  at 0.2 of 
machine dimensionless lifetime, having damage 
acceleration point at 0.6 lifetime as before. 

Let us apply now the same methodology to the 
special case of ball bearing testing with specially 
modulated load, as shown in Fig. 9. One can see here 
that such load modulation is visible in every stage of 
signal decomposition (left picctures); after 
normalization and centering, and after SVD 
decomposition as well. However the symptom limit 
vale Sl is determined easily, what can be seen in the 

picture bottom right of Fig. 9. And now the 
important question is, what will be the life 
behavior of singular vales and their derivative 
measures; Frob1 , Vol1 in this case? This can be 
seen in detail in Fig.10, where one can notice 
some small modulation imposed on the steady 
growth of all life dependent curves. This 
concerns only to the singular values and their 
sum, but not on the product of singular values, 
and such behavior is independent of redundancy 
reduction. However, after the rejection of three 
redundant symptoms, the course of Vol1 curve is 
much more life sensitive, as it was reported 
before (see Fig. 11).  
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Fig. 9. The decomposition of SOM of a ball bearing at the durability testing stand with an modulated load 
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Fig. 10. The evolution of singular values and their derivative measures for the case of  Fig. 9 
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Fig.11. The same as in Fig. 10, but with rejected three redundant symptoms 

 
When comparing the course of total damage 

symptom of the machine (curve with dots in Fig. 9  

picture bottom left) with total damage symptoms 
obtained as modified Frobenius measure (Fig. 10 an 

11) one can note that ongoing breakdown of the 
machine is much more visible when looking for the 
new measure Frob1. 

It seems to the author that enough conclusive 
evidences have been presented above, concerning 
some new unknown property of singular values, when 
SVD is applied to SOM of system in operation. This is 
particularly well seen when singular values and their 
derivatives are presented along system lifetime. This 
conclusion needs more rethinking and condition 
monitoring verification, but up to now the presented 
results seems to be sound. In future investigations one 
should verify if the linear growths property (12) is 
connected with system damage or with the number of 
rows in a SOM matrix. This seems to be essential for a 
further diagnostic application of newly detected 
properties of singular vales. 
 
5. CONCLUSIONS 

In a recent papers [11, 13 -18] of the present author, 
the problem of diagnostic decision in case of load 
sensitive machines has been considered. And the last 
paper [19] brings some new useful property of SOM 
singular values; namely their immunity against 
machine load change. It s very important property, 
hence following this, a simple model of singular 
values evolution has been proposed and validated by 
means of several diagnostic cases; first with constant 
load and with unstable machine load latter on. It was 
found that proposed linear growth model of individual 
singular value fits well to the real cases of machinery 
diagnostic, the same as exponential model for the 
product measure of singular values Vol1. It was also 
found, that this measure is sensitive to the redundancy 

in observation space and can depict well the 
beginning of the damage in monitored system.  
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