PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

High sensitive methods for fatigue detection

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wysokoczułe metody detekcji zmęczenia
Języki publikacji
EN
Abstrakty
EN
The diagnostic and research aspects of compressor blade fatigue detection are investigated in the paper. The authors review the characteristic of different modes of metal blade fatigue (LCF, HCF, VHCF). The polycrystalline defects and impurities influencing the fatigue, along with their related surface finish techniques, are taken into account. The experimental methods of structural health assessment are considered. The Tip Timing (TTM), Experimental Modal Analysis (EMA) and Metal Magnetic Memory (MMM) provide information on the damage of diagnosed object (compressor blade). It has been proven that the shape of resonance characteristic gives an ability to determinate if fatigue or a blade crack is concerned. Early damage symptoms, i.e. modal properties of material strengthening and weakening phases (structural and magnetic anisotropy) have been described.
PL
W artykule przedstawiono doświadczenia z badań stoiskowych i diagnozowania zmęczenia łopatek sprężarki. Wskazano typowe przypadki zmęczenia metalowych łopatek (LCF, HCF i VHCF). W rozważaniach uwzględniono cechy rzeczywistego materiału konstrukcyjnego, w tym wpływ domieszek, defektów struktury polikrystalicznej i obróbki wykańczającej na zmęczenie materiału. Przedstawiono metody badawcze stosowane do monitorowania stanu technicznego. Wykazano, że metoda tip timing (TTM), eksperymentalna analiza modalna (EMA) i magnetyczna pamięć metalu (MMM) udostępniają informację o narastającym zmęczeniu diagnozowanego obiektu (łopatki sprężarki). M.in. wykazano, że kształt krzywej rezonansowej jest związany z poziomem zmęczenia struktury i pęknięciem pióra. Opisano wczesne symptomy zmęczenia, m.in. właściwości modalne fazy umocnienia i osłabienia (strukturalnej i magnetycznej anizotropii).
Czasopismo
Rocznik
Tom
Strony
25--34
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr.
Twórcy
autor
autor
  • Instytut Techniczny Wojsk Lotniczych (Air Force Institute of Technology, AFIT), 01-494 Warszawa ul. Księcia. Bolesława 6, fax. +4822 851105, miroslaw.witos@itwl.pl
Bibliografia
  • [1] US Patents 2575710 (1951), 3058339 (1962), 3467358 (1969), 3597963 (1971), 4153388 (1979), 4593566 (1986), 4827435 (1989), 5148711 (1992), 5479826 (1996), 6094989 (2000).
  • [2] Witos M. (1994): Diagnosing of technical condition of turbine engine compressor blades using non-contact vibration measuring method. Dissertation, ITWL Warszawa (pol.).
  • [3] Von Flotow A., Drumm M. J. (2002): Engine Sensing Technology Hardware & Software to Monitor Engine Rotor Dynamics Using Blade Time-Of-Arrival and Tip Clearance. Hood River, OR, USA, http://www.hoodtech.com
  • [4] Washburn R. (2004): Amplitude and Phase Variations Associated with Low Order Resonance Responses Subjected to Time Varying Excitation Sources. Proc. of 9 th National Turbine Engine High Cycle Fatigue Conference.
  • [5] Zielinski M., Ziller G. (2005): Noncontact Crack Detection on Compressor Rotor Blades to Prevent Further Damage after HC-Failure. RTO MP-AVT-121 Meeting Proceedings, NATO, paper 19, http://www.mtu.de
  • [6] Witos, M., Szczepanik, R. (2005): Turbine Engine Health/Maintenance Status Monitoring with Use of Phase-Discrete Method of Blade Vibration Monitoring. RTO-MP-AVT - 121 Meeting Proceedings, NATO, paper 2.
  • [7] Duan F., Fang Z., Sun Y., Ye S. (2005): Realtime Vibration Measurement Technique Based on Tip-timing for Rotating Blades. Opto-Electronic Engineering, Vol. 30(1), pp. 29-31.
  • [8] Ayes B.W., Arnold S., Vining Ch., Howard R. (2005): Application of Generation 4 Noncontact Stress Measurement System on HCF Demonstrator Engines. Proc. of 10th National Turbine Engine High Cycle Fatigue (HCF) Conference. Dayton, USA.
  • [9] http://www.agilismeasurementsystems.com
  • [10] Brouckaert J.F. (editor) Tip Timing and Tip Clearance Problems in Turbomachinary. Lecture Series 3-2007, VKI Belgium, 2007.
  • [11] Witos M. (2008): On the Modal Analysis of a Cracking Compressor Blade. Research works of AFIT, Issue 23, pp. 21-36.
  • [12] Vlasov V.T., Dubov A.A. (2004): Physical Bases of the Metal Magnetic Memory Method. ZAO “Tisso” Publishing House, Moscow.
  • [13] Ding X., Li J., Li F., Pang X. (2008): Magnetic Memory Inspection of High Pressure Manifoolds. 17th World Conference on Nondestructive Testing, 25-28 Oct 2008, Shanghai, China.
  • [14] Lisiecki J. (2004): O metodzie magnetycznej pamięci materiału. Prace Naukowe ITWL, Warszawa, Zeszyt 18, s. 51-84.
  • [15] Liu Q., Lin J., Chen M., Wang C., Wang G., Zhao F. Z., Geng Y. , Zheng Ch. (2008): A Study of Inspecting the Stress on Downhole Metal Casing in Oilfields with Magnetic Memory Method. 17th World Conference on Nondestructive Testing, 25-28 Oct 2008, Shanghai, China.
  • [16] Radziszewski A. (2001): Doświadczenia z kontroli urządzeń i ich oprzyrządowania w polskich przedsiębiorstwach z zastosowaniem metody magnetycznej pamięci metalu. Materiały 30 KKBN, Szczyrk. Zeszyty Problemowe. Badania Nieniszczące, Nr 6 (2001), s. 165 - 170.
  • [17] Roskosz M. (2005): Zastosowanie metody magnetycznej pamięci metalu do badań wirników sprężarek. Problemy i innowacje w remontach energetycznych. PIRE 2005. VIII Konferencja naukowo-techniczna, Szklarska Poręba, s. 259-270.
  • [18] Witoś M., Wiśnoch M. (2009): Metoda magnetycznej pamięci metalu w diagnozowaniu techniki lotniczej. XV Seminarium „Nieniszczące badania materiałów”, Zakopane, 10-13 marca 2009; http://www.ndt-imbn.com/portal.
  • [19] Shaniavski A.A. (2007): Modeling of fatigue cracking of metals. Synergetics for aviation. Publishing House of Scientific and Technical Literature “Monography”, Ufa (ros.).
  • [20] Shaniavski A.A. (2003): Tolerance Fatigue of Aircraft Components. Synergetics in engineering applications. Publishing House of Scientific and Technical Literature “Monography”, Ufa (ros.).
  • [21] Murakami Y., Nomoto T., Ueda T: (1999): Factors Influencing the Mechanism of Superlong Fatigue Failure in Steels. Fatigue and Fracture of Engineering Materials and Structures, Vol. 22, pp. 581-590.
  • [22] Murakami Y., Takada Y., Toriyama T. (1998): Super-long life tension-compression fatigue properties of quenched and tempered 0.46%C steel. International Journal of Fatigue Vol. 16, pp. 661-667.
  • [23] Sakai T. (2009): Review and prospects for current studies on Very High Cycle Fatigue of metal materials for machine structural use. Journal of Solid Mechanics and Materials Engineering, Vol. 3, No 3, pp. 425-439.
  • [24] Witek L. (2009): Experimental crack propagation analysis on the compressor blades working in high cycle fatigue condition, [in] Fatigue of Aircraft Structures Monographic Series (editor Niepokólczycki A.), Institute of Aviation Scientific Publications, Warsaw, pp. 195-204.
  • [25] http://www.mtiintruments.com
  • [26] www.vibrationresearch.com/software
  • [27] De Silva C.W. (2007): Vibration Damping, Control and Design. Taylor & Francis.
  • [28] Witoś M. (2010): Increasing the durability of turbine engine components through active diagnostics and control. Research works of AFIT, Issue 29 (pol., in print).
  • [29] Ostrovsky L.A., Johnson P.A. (2001): Dynamic nonlinear elasticity in geomaterials. Revista del Nuovo Cimento, Vol. 24, No 7, pp. 1 - 46, http://www.lanl.gov/orgs/ees/ees11/geophysics/nonlinear/2001/nrc8730.pdf
  • [30] Buch A. (1964), Zagadnienia wytrzymałości zmęczeniowej, PWN, Warszawa.
  • [31] Tae-Kyu Lee, J.W. Morris, Jr., Seungkyun Lee and J. Clarke: Detection of fatigue damage prior to crack initiation with scanning SQUID microscopy. Review of Progress in Quantitative Nondestructive Evaluation, Vol. 25.
  • [32] Altherton D.L., Jiles D.C. (1986): Effects of stress on magnetization. NDT International, Vol. 19, No 1, pp. 15-19.
  • [33] Birss R. R., Faunce C. A. (1971): Stress-Induced Magnetization in Small Magnetic Fields. Journal de Physique, Colloque C I, supplément au no 2-3, Tome 32, Février-Mars, page C 1 - 686-688.
  • [34] Robertson I.M. (1991): Magneto-Elastic Behaviour of Steels for Naval Applications, MRL Technical Report, MRL-TR-90-27, DSTO Materials Research Laboratory.
  • [35] Atherton D.L., Sudersena Rao, T., de Sa V., Schönbachler M. (1988): Thermodynamic Correlation Tests Between Magnetostrictive and Magnetomechanical Effects in 2% Mn Pipeline Steel. IEEE Transactions on Magnetics, Vol. 24, No 5, September, pp. 2177-2180.
  • [36] Blanter M.S., Golovin I.S., Neuhäuser H., Sinning H,-R. (2007): Internal Friction in Metallic Materials. A Handbook. Springer-Verlag, Berlin.
  • [37] Gui Y. S., Wirthmann A., Macking N., Hu C.-M. (2009): Direct measurement of nonlinear ferromagnetic damping via the intrinsic foldover effect. Phys. Rev. B 80, 060402(R).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAR0-0063-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.